Special holonomy on special spaces
- We characterise simply-connected biquotients which potentially admit metrics of holonomy G_2. We prove that there are at most three real homotopy types of rationally elliptic such manifolds - all of them being formal. In the course of this examination we classify rationally elliptic homotopy types and characterise 7-dimensional simply-connected biquotients from a rational point of view. Moreover, we also investigate further manifolds of special holonomy, like manifolds of holonomy Spin(7) or Sp(n)\Sp(1) in special situations provided by rational ellipticity or geometric formality.
Author: | Manuel AmannGND |
---|---|
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/83640 |
URL: | https://arxiv.org/abs/1403.1442 |
Parent Title (English): | arXiv |
Type: | Preprint |
Language: | English |
Date of Publication (online): | 2021/02/21 |
Year of first Publication: | 2014 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2021/02/21 |
Issue: | arXiv:1403.1442 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Differentialgeometrie |