An algebra of hybrid systems
- Hybrid systems are heterogeneous systems characterised by the interaction of discrete and continuous dynamics. We present a trajectory-based algebraic model for describing hybrid systems; the trajectories used are closely related to streams. The algebra is based on left quantales and left semirings and provides a new application for these algebraic structures. We show that hybrid automata, which are probably the standard tool for describing hybrid systems, can conveniently be embedded into our algebra. Moreover we point out some important advantages of the algebraic approach. In particular, we show how to handle Zeno effects, which are excluded by most other authors. The development of the theory is illustrated by a running example and a larger case study.
Author: | Peter HöfnerGND, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-7573 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/901 |
Series (Serial Number): | Reports / Technische Berichte der Fakultät für Angewandte Informatik der Universität Augsburg (2007-08) |
Publisher: | Institut für Informatik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Report |
Language: | English |
Year of first Publication: | 2007 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2008/06/16 |
Tag: | hybrid system; semiring; quantale; equational reasoning |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |