Latent-based adversarial neural networks for facial affect estimations

Download full text files

  • 91671.pdfeng
    (212KB)

    Postprint. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Decky Aspandi, Adria Mallol-RagoltaORCiDGND, Björn SchullerORCiDGND, Xavier Binefa
URN:urn:nbn:de:bvb:384-opus4-916712
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/91671
ISBN:978-1-7281-3080-4OPAC
Parent Title (English):15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, Argentina, 16-20 November 2020
Publisher:IEEE
Place of publication:New York, NY
Editor:Juan Wachs, Sergio Escalera, Jeffrey Cohn, Vitomir Štruc, Francisco Gómez-Fernández
Type:Part of a Book
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2022/01/26
First Page:606
Last Page:610
DOI:https://doi.org/10.1109/fg47880.2020.00053
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht