Bag-of-words representations for computer audition
- Computer audition is omnipresent in everyday life, in applications ranging from personalised virtual agents to health care. From a technical point of view, the goal is to robustly classify the content of an audio signal in terms of a defined set of labels, such as, e.g., the acoustic scene, a medical diagnosis, or, in the case of speech, what is said or how it is said. Typical approaches employ machine learning (ML), which means that task-specific models are trained by means of examples. Despite recent successes in neural network-based end-to-end learning, taking the raw audio signal as input, models relying on hand-crafted acoustic features are still superior in some domains, especially for tasks where data is scarce. One major issue is nevertheless that a sequence of acoustic low-level descriptors (LLDs) cannot be fed directly into many ML algorithms as they require a static and fixed-length input. Moreover, also for dynamic classifiers, compressing the information of the LLDs over aComputer audition is omnipresent in everyday life, in applications ranging from personalised virtual agents to health care. From a technical point of view, the goal is to robustly classify the content of an audio signal in terms of a defined set of labels, such as, e.g., the acoustic scene, a medical diagnosis, or, in the case of speech, what is said or how it is said. Typical approaches employ machine learning (ML), which means that task-specific models are trained by means of examples. Despite recent successes in neural network-based end-to-end learning, taking the raw audio signal as input, models relying on hand-crafted acoustic features are still superior in some domains, especially for tasks where data is scarce. One major issue is nevertheless that a sequence of acoustic low-level descriptors (LLDs) cannot be fed directly into many ML algorithms as they require a static and fixed-length input. Moreover, also for dynamic classifiers, compressing the information of the LLDs over a temporal block by summarising them can be beneficial. However, the type of instance-level representation has a fundamental impact on the performance of the model. In this thesis, the so-called bag-of-audio-words (BoAW) representation is investigated as an alternative to the standard approach of statistical functionals. BoAW is an unsupervised method of representation learning, inspired from the bag-of-words method in natural language processing, forming a histogram of the terms present in a document. The toolkit openXBOW is introduced, enabling systematic learning and optimisation of these feature representations, unified across arbitrary modalities of numeric or symbolic descriptors. A number of experiments on BoAW are presented and discussed, focussing on a large number of potential applications and corresponding databases, ranging from emotion recognition in speech to medical diagnosis. The evaluations include a comparison of different acoustic LLD sets and configurations of the BoAW generation process. The key findings are that BoAW features are a meaningful alternative to statistical functionals, offering certain benefits, while being able to preserve the advantages of functionals, such as data-independence. Furthermore, it is shown that both representations are complementary and their fusion improves the performance of a machine listening system.…
- Maschinelles Hören ist im täglichen Leben allgegenwärtig, mit Anwendungen, die von personalisierten virtuellen Agenten bis hin zum Gesundheitswesen reichen. Aus technischer Sicht besteht das Ziel darin, den Inhalt eines Audiosignals hinsichtlich einer Auswahl definierter Labels robust zu klassifizieren. Die Labels beschreiben bspw. die akustische Umgebung der Aufnahme, eine medizinische Diagnose oder - im Falle von Sprache - was gesagt wird oder wie es gesagt wird. Übliche Ansätze hierzu verwenden maschinelles Lernen, d.h., es werden anwendungsspezifische Modelle anhand von Beispieldaten trainiert. Trotz jüngster Erfolge beim Ende-zu-Ende-Lernen mittels neuronaler Netze, in welchen das unverarbeitete Audiosignal als Eingabe benutzt wird, sind Modelle, die auf definierten akustischen Merkmalen basieren, in manchen Bereichen weiterhin überlegen. Dies gilt im Besonderen für Einsatzzwecke, für die nur wenige Daten vorhanden sind. Allerdings besteht dabei das Problem, dass Zeitfolgen vonMaschinelles Hören ist im täglichen Leben allgegenwärtig, mit Anwendungen, die von personalisierten virtuellen Agenten bis hin zum Gesundheitswesen reichen. Aus technischer Sicht besteht das Ziel darin, den Inhalt eines Audiosignals hinsichtlich einer Auswahl definierter Labels robust zu klassifizieren. Die Labels beschreiben bspw. die akustische Umgebung der Aufnahme, eine medizinische Diagnose oder - im Falle von Sprache - was gesagt wird oder wie es gesagt wird. Übliche Ansätze hierzu verwenden maschinelles Lernen, d.h., es werden anwendungsspezifische Modelle anhand von Beispieldaten trainiert. Trotz jüngster Erfolge beim Ende-zu-Ende-Lernen mittels neuronaler Netze, in welchen das unverarbeitete Audiosignal als Eingabe benutzt wird, sind Modelle, die auf definierten akustischen Merkmalen basieren, in manchen Bereichen weiterhin überlegen. Dies gilt im Besonderen für Einsatzzwecke, für die nur wenige Daten vorhanden sind. Allerdings besteht dabei das Problem, dass Zeitfolgen von akustischen Deskriptoren in viele Algorithmen des maschinellen Lernens nicht direkt eingespeist werden können, da diese eine statische Eingabe fester Länge benötigen. Außerdem kann es auch für dynamische (zeitabhängige) Klassifikatoren vorteilhaft sein, die Deskriptoren über ein gewisses Zeitintervall zusammenzufassen. Jedoch hat die Art der Merkmalsdarstellung einen grundlegenden Einfluss auf die Leistungsfähigkeit des Modells. In der vorliegenden Dissertation wird der sogenannte Bag-of-Audio-Words-Ansatz (BoAW) als Alternative zum Standardansatz der statistischen Funktionale untersucht. BoAW ist eine Methode des unüberwachten Lernens von Merkmalsdarstellungen, die von der Bag-of-Words-Methode in der Computerlinguistik inspiriert wurde, bei der ein Textdokument als Histogramm der vorkommenden Wörter beschrieben wird. Das Toolkit openXBOW wird vorgestellt, welches systematisches Training und Optimierung dieser Merkmalsdarstellungen - vereinheitlicht für beliebige Modalitäten mit numerischen oder symbolischen Deskriptoren - erlaubt. Es werden einige Experimente zum BoAW-Ansatz durchgeführt und diskutiert, die sich auf eine große Zahl möglicher Anwendungen und entsprechende Datensätze beziehen, von der Emotionserkennung in gesprochener Sprache bis zur medizinischen Diagnostik. Die Auswertungen beinhalten einen Vergleich verschiedener akustischer Deskriptoren und Konfigurationen der BoAW-Methode. Die wichtigsten Erkenntnisse sind, dass BoAW-Merkmalsvektoren eine geeignete Alternative zu statistischen Funktionalen darstellen, gewisse Vorzüge bieten und gleichzeitig wichtige Eigenschaften der Funktionale, wie bspw. die Datenunabhängigkeit, erhalten können. Zudem wird gezeigt, dass beide Darstellungen komplementär sind und eine Fusionierung die Leistungsfähigkeit eines Systems des maschinellen Hörens verbessert.…
Author: | Maximilian SchmittORCiD |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-942798 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/94279 |
Advisor: | Björn Schuller |
Type: | Doctoral Thesis |
Language: | English |
Year of first Publication: | 2022 |
Publishing Institution: | Universität Augsburg |
Granting Institution: | Universität Augsburg, Fakultät für Angewandte Informatik |
Date of final exam: | 2022/03/18 |
Release Date: | 2022/05/20 |
Tag: | Bag-of-Audio-Words; Computer Audition; Acoustic Features; Representation Learning; Machine Learning |
GND-Keyword: | Maschinelles Lernen; Künstliche Intelligenz; Multimodales System; Mensch-Maschine-Kommunikation; Information Retrieval; Tonsignal |
Pagenumber: | xix, 243 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | CC-BY-SA 4.0: Creative Commons: Namensnennung - Weitergabe unter gleichen Bedingungen (mit Print on Demand) |