Identification of microstructural information from macroscopic boundary measurements in steady‐state linear elasticity

  • We consider the upscaled linear elasticity problem in the context of periodic homogenization. Based on measurements of the deformation of the (macroscopic) boundary of a body for a given forcing, it is the aim to deduce information on the geometry of the microstructure. For a parametrized microstructure, we are able to prove that there exists at least one solution of the associated minimization problem based on the L2$$ {L}^2 $$‐difference of the measured deformation and the resulting deformation for a given parameter. To facilitate the use of gradient‐based algorithms, we derive the Gâteaux derivatives using the Lagrangian method of Céa, and we present numerical experiments showcasing the functioning of the method.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tanja LochnerORCiDGND, Malte A. PeterORCiDGND
URN:urn:nbn:de:bvb:384-opus4-970927
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/97092
ISSN:0170-4214OPAC
ISSN:1099-1476OPAC
Parent Title (English):Mathematical Methods in the Applied Sciences
Publisher:Wiley
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2022/08/01
Tag:General Engineering; General Mathematics
Volume:46
Issue:1
First Page:1295
Last Page:1316
DOI:https://doi.org/10.1002/mma.8581
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)