Multidimensional rank-one convexification of incremental damage models at finite strains

  • This paper presents computationally feasible rank-one relaxation algorithms for the efficient simulation of a time-incremental damage model with nonconvex incremental stress potentials in multiple spatial dimensions. While the standard model suffers from numerical issues due to the lack of convexity, the relaxation techniques circumvent the problem of non-existence of minimizers and prevent mesh dependency of the solutions of discretized boundary value problems using finite elements. By the combination, modification and parallelization of the underlying convexification algorithms the approach becomes computationally feasible. A descent method and a Newton scheme enhanced by step size control strategies prevents stability issues related to local minima in the energy landscape and the computation of derivatives. Special techniques for the construction of continuous derivatives of the approximated rank-one convex envelope are discussed. A series of numerical experimentsThis paper presents computationally feasible rank-one relaxation algorithms for the efficient simulation of a time-incremental damage model with nonconvex incremental stress potentials in multiple spatial dimensions. While the standard model suffers from numerical issues due to the lack of convexity, the relaxation techniques circumvent the problem of non-existence of minimizers and prevent mesh dependency of the solutions of discretized boundary value problems using finite elements. By the combination, modification and parallelization of the underlying convexification algorithms the approach becomes computationally feasible. A descent method and a Newton scheme enhanced by step size control strategies prevents stability issues related to local minima in the energy landscape and the computation of derivatives. Special techniques for the construction of continuous derivatives of the approximated rank-one convex envelope are discussed. A series of numerical experiments demonstrates the ability of the computationally relaxed model to capture softening effects and the mesh independence of the computed approximations.show moreshow less
Metadaten
Author:Daniel Balzani, Maximilian Köhler, Timo NeumeierGND, Malte A. PeterORCiDGND, Daniel PeterseimORCiDGND
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/99667
Type:Preprint
Language:English
Year of first Publication:2022
Publishing Institution:Universität Augsburg
Release Date:2022/11/25
First Page:1
Last Page:28
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):Deutsches Urheberrecht