• search hit 24 of 6065
Back to Result List

State cloning with the GraphLearner

  • This paper introduces the Cloned GraphLearner, a neuromorphic sequence generation model that mitigates state aliasing in high-order Markov chains through a lightweight, iterative state cloning procedure. Starting from the original GraphLearner, which stores variable length histories in a Graph Structured Bloom Filter, the algorithm successively creates layers of cloned states whose identity and inter-clone edges index increasingly long context windows while an oblivion rule bounds growth. When trained with action-observation sequences the resulting Cloned GraphLearner acts as a topographic schema with individual clones firing in context specific patterns that resemble hippocampal place cell activity.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Timothy Harrison, Herwig Unger
URN:urn:nbn:de:bvb:384-opus4-1252576
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125257
Parent Title (English):3rd Workshop on Machine Learning in Networking (MaLeNe), co-located with the 6th International Conference on Networked Systems (NetSys 2025), Ilmenau, Germany, September 1, 2025: proceedings
Publisher:Universität Augsburg
Place of publication:Augsburg
Editor:Michael SeufertORCiDGND, Andreas Blenk, Björn Richerzhagen
Type:Conference Proceeding
Language:English
Date of Publication (online):2025/09/15
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/16
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Vernetzte Systeme und Kommunikationsnetze
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)