• search hit 11 of 12
Back to Result List

Identifiability and observability analysis for experimental design in nonlinear dynamical models

  • Dynamical models of cellular processes promise to yield new insights into the underlying systems and their biological interpretation. The processes are usually nonlinear, high dimensional, and time-resolved experimental data of the processes are sparse. Therefore, parameter estimation faces the challenges of structural and practical nonidentifiability. Nonidentifiability of parameters induces nonobservability of trajectories, reducing the predictive power of the model. We will discuss a generic approach for nonlinear models that allows for identifiability and observability analysis by means of a realistic example from systems biology. The results will be utilized to design new experiments that enhance model predictiveness, illustrating the iterative cycle between modeling and experimentation in systems biology.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Andreas RaueORCiDGND, V. Becker, U. Klingmüller, J. Timmer
URN:urn:nbn:de:bvb:384-opus4-1132718
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113271
ISSN:1054-1500OPAC
ISSN:1089-7682OPAC
Parent Title (English):Chaos: An Interdisciplinary Journal of Nonlinear Science
Publisher:AIP Publishing
Type:Article
Language:English
Year of first Publication:2010
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:20
Issue:4
First Page:045105
DOI:https://doi.org/10.1063/1.3528102
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Modellierung und Simulation biologischer Prozesse
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):Deutsches Urheberrecht