- This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydrographs, flood maps, flood probability maps and additional statistics in West Africa for the first time, offering a comprehensive understanding of flood dynamics under uncertainty. Ensemble hydrographs and maps obtained enhance decision-making by showing discharge scenarios, spatial flood variability, prediction reliability, and probabilities, supporting targeted flood management and resource planning under uncertainty. The findings underline the need for a comprehensive strategy to mitigate bothThis study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydrographs, flood maps, flood probability maps and additional statistics in West Africa for the first time, offering a comprehensive understanding of flood dynamics under uncertainty. Ensemble hydrographs and maps obtained enhance decision-making by showing discharge scenarios, spatial flood variability, prediction reliability, and probabilities, supporting targeted flood management and resource planning under uncertainty. The findings underline the need for a comprehensive strategy to mitigate both common and rare flood events while accounting for spatial uncertainties inherent in hydrological and hydraulic modeling.…

