• search hit 10 of 36
Back to Result List

Improving deep learning models for pediatric low-grade glioma tumours molecular subtype identification using MRI-based 3D probability distributions of tumour location

  • Purpose: Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype identification of pLGG and augment the models using tumour location probability maps. Materials and Methods: MRI FLAIR sequences of 214 patients (110 male, mean age of 8.54 years, 143 BRAF fused and 71 BRAF V600E mutated pLGG tumours) from January 2000 to December 2018 were included in this retrospective REB-approved study. Tumour segmentations (volumes of interest-VOIs) were provided by a pediatric neuroradiology fellow and verified by a pediatric neuroradiologist. Patients were randomly split into development and test sets with an 80/20 ratio. The 3D binary VOI masks for each class in the development set were combined to derive the probability density functions of tumour location. Three pipelines for molecular diagnosis of pLGG were developed:Purpose: Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype identification of pLGG and augment the models using tumour location probability maps. Materials and Methods: MRI FLAIR sequences of 214 patients (110 male, mean age of 8.54 years, 143 BRAF fused and 71 BRAF V600E mutated pLGG tumours) from January 2000 to December 2018 were included in this retrospective REB-approved study. Tumour segmentations (volumes of interest-VOIs) were provided by a pediatric neuroradiology fellow and verified by a pediatric neuroradiologist. Patients were randomly split into development and test sets with an 80/20 ratio. The 3D binary VOI masks for each class in the development set were combined to derive the probability density functions of tumour location. Three pipelines for molecular diagnosis of pLGG were developed: location-based, CNN-based, and hybrid. The experiment was repeated 100 times each with different model initializations and data splits, and the Areas Under the Receiver Operating Characteristic Curve (AUROC) was calculated, and Student's t-test was conducted. Results: The location-based classifier achieved an AUROC of 77.9, 95% confidence interval (CI) (76.8, 79.0). CNN-based classifiers achieved an AUROC of 86.1, 95% CI (85.0, 87.3), while the tumour-location-guided CNNs outperformed the other classifiers with an average AUROC of 88.64, 95% CI (87.6, 89.7), which was statistically significant (P-value .0018). Conclusion: Incorporating tumour location probability maps into CNN models led to significant improvements for molecular subtype identification of pLGG.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Khashayar Namdar, Matthias W. WagnerORCiDGND, Kareem Kudus, Cynthia Hawkins, Uri Tabori, Birgit B. Ertl-Wagner, Farzad Khalvati
URN:urn:nbn:de:bvb:384-opus4-1211655
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/121165
ISSN:0846-5371OPAC
ISSN:1488-2361OPAC
Parent Title (English):Canadian Association of Radiologists Journal
Publisher:SAGE Publications
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/04/23
Volume:76
Issue:2
First Page:313
Last Page:323
DOI:https://doi.org/10.1177/08465371241296834
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Diagnostische und Interventionelle Neuroradiologie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)