Design optimization with complex-valued material parameters
- We consider the two-phase design optimization problem for a linear scalar second-order elliptic equation with complex-valued material parameters modeling dielectric and conductive properties in time-harmonic electrostatics as they arise, e.g., in sensor design optimization. Owing to the complex-valued material parameters, application of well-established topology optimization theory is not directly possible. We discuss obstacles and limitations of the relaxation via homogenization method in this context and derive a gradient descent method based on restriction of admissible designs to simple laminates. Numerical simulations showcase the functioning of the method for optimizing the design of an electric field sensor.
Author: | Ursula Weiss, Malte A. PeterORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1243351 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/124335 |
ISSN: | 0022-0833OPAC |
Parent Title (English): | Journal of Engineering Mathematics |
Publisher: | Springer Science and Business Media LLC |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/08/07 |
Volume: | 153 |
First Page: | 7 |
DOI: | https://doi.org/10.1007/s10665-025-10469-0 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |