• search hit 9 of 10
Back to Result List

Analysis of the relationship between training data volume and model quality for surrogate models in physical simulations

  • Typically, the quality of AI models is highly dependent on the amount and quality of the available training data. While for many applications of AI several million training datasets are available in accessible databases and can be easily extended, the generation of training data for surrogate models of physics simulations is computationally demanding. To identify the necessary amount of training data for a sufficient good AI model, we are evaluating the performance of a surrogate model for a thermomechanical production process with different sizes of artificially generated training data.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tom Roeger, Ludwig VogtGND, Tobias Friedrich, Johannes SchilpGND
URN:urn:nbn:de:bvb:384-opus4-1158601
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115860
ISSN:2212-8271OPAC
Parent Title (English):Procedia CIRP
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/10/14
Volume:126
First Page:745
Last Page:750
DOI:https://doi.org/10.1016/j.procir.2024.08.302
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Ingenieurinformatik mit Schwerpunkt Produktionsinformatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)