• search hit 6 of 16867
Back to Result List

The doubly nonlocal Hele-Shaw–Cahn–Hilliard system with singular potential and nonconstant mobility

  • We present the rigorous asymptotic analysis in thin domains of a diffuse interface model of two-component Hele-Shaw flow based on an advective nonlocal Cahn–Hilliard equation with singular potential and nonconstant nondegenerate mobility for the relative concentration. The velocity is determined by a Stokes system in which the inhomogeneous viscosity is highly oscillating and dependent on the relative concentration. Using the notion of sigma-convergence for thin heterogeneous media, we obtain in the homogenization limit a new doubly nonlocal Hele-Shaw–Cahn–Hilliard-type model system containing an additional term arising from the dependence of the viscosity on the relative concentration. In the case when both the viscosity and the mobility coefficients do not depend on the relative concentration, we additionally prove that the new model is well posed and we establish the existence of global strong solutions.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Malte A. PeterGND, Jean Louis Woukeng
URN:urn:nbn:de:bvb:384-opus4-1249063
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/124906
ISSN:0938-8974OPAC
ISSN:1432-1467OPAC
Parent Title (English):Journal of Nonlinear Science
Publisher:Springer Science and Business Media LLC
Place of publication:New York, Ny
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/09
Volume:35
Issue:5
First Page:107
DOI:https://doi.org/10.1007/s00332-025-10202-2
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehr- und Forschungseinheit Angewandte Analysis
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)