• search hit 2 of 2180
Back to Result List

Crystallization and crystal morphology of polymers: a multiphase-field study

  • In this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura’s kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials. We apply our model to systems of neat PA6 and study the impact of initial distribution of crystalline grains and cooling rate on the morphology of the system. The relative crystallinity (conversion) curves show qualitative agreement with experimental data. We also investigate the impact of including carbon fibers on the crystallization and grain morphology. We observe a more homogeneous crystal morphology around fibers. This is associated with the higher initial volume fraction of crystalIn this paper, we introduce a coarse-grained model of polymer crystallization using a multiphase-field approach. The model combines a multiphase-field method, Nakamura’s kinetic equation, and the equation of heat conduction for studying microstructural evolution of crystallization under isothermal and non-isothermal conditions. The multiphase-field method provides flexibility in adding any number of phases with different properties making the model effective in studying blends or composite materials. We apply our model to systems of neat PA6 and study the impact of initial distribution of crystalline grains and cooling rate on the morphology of the system. The relative crystallinity (conversion) curves show qualitative agreement with experimental data. We also investigate the impact of including carbon fibers on the crystallization and grain morphology. We observe a more homogeneous crystal morphology around fibers. This is associated with the higher initial volume fraction of crystal grains and higher heat conductivity of the fiber (compared to the polymer matrix). Additionally, we observe that the crystalline grains at the fiber surface grow perpendicular to the surface. This indicates that the vertical growth observed in experiments is merely due to geometrical constraints imposed by the fiber surface and neighbouring crystalline regions.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Navid AfrasiabianORCiD, Ahmed Elmoghazy, Juliane BlarrORCiD, Benedikt Scheuring, Andreas PrahsORCiD, Daniel SchneiderORCiD, Wilfried V. Liebig, Kay A. WeidenmannORCiDGND, Colin DennistonORCiD, Britta Nestler
URN:urn:nbn:de:bvb:384-opus4-1252728
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125272
ISSN:0892-7057OPAC
ISSN:1530-7980OPAC
Parent Title (English):Journal of Thermoplastic Composite Materials
Publisher:SAGE Publications
Place of publication:London
Type:Article
Language:English
Date of first Publication:2025/08/01
Publishing Institution:Universität Augsburg
Release Date:2025/09/16
Tag:Multiphase-field; crystallization kinetics; fiber-reinforced polymer
Volume:38
Issue:8
First Page:3020
Last Page:3050
DOI:https://doi.org/10.1177/08927057241296472
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Materials Resource Management / Lehrstuhl für Hybride Werkstoffe
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)