Derived category of the spinor 15-fold
- We construct a full exceptional Lefschetz collection on the spinor 15-fold consisting of a connected component of the space of orthogonal 6-dimensional subspaces of a 12-dimensional complex vector space, isotropic with respect to a fixed non-degenerate quadratic form. The collection is made of 2 twists of a 4-item block and 8 twists of a 3-item block, confirming a conjecture of Kuznetsov and Smirnov. We speculate that a similar collection might work for the Freudenthal E7-variety.
Author: | Vladimiro Benedetti, Daniele Faenzi, Maxim N. SmirnovORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1218555 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/121855 |
ISSN: | 0021-8693OPAC |
Parent Title (English): | Journal of Algebra |
Publisher: | Elsevier BV |
Place of publication: | Amsterdam |
Type: | Article |
Language: | English |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/05/09 |
Volume: | 677 |
First Page: | 460 |
Last Page: | 496 |
DOI: | https://doi.org/10.1016/j.jalgebra.2025.04.019 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Algebra und Zahlentheorie | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |