• search hit 8 of 284
Back to Result List

Convergence of equilibria of thin elastic plates in a discrete model - The von Kármán case

  • We contribute to the mathematical rigorous derivation of the von-Kármán plate theory starting from an atomistic interaction model. We cover two different regimes: Thin and ultrathin films. The latter are extremely thin only consisting from a few layers of atoms. We show the convergence of equilibrium points of 3-dimensional nonlinear atomistic energy functionals to an equilibrium points of the von-Kármán functional. Since the atomic distance as well as the height of the plate tend to zero this includes two small parameters. A similar result is also shown for the time-dependent version of the equation.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:David Buchberger
URN:urn:nbn:de:bvb:384-opus4-1152994
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/115299
Advisor:Bernd Schmidt
Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/09/16
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Date of final exam:2024/07/17
Release Date:2024/09/16
Tag:discrete-to-continuum, dimension reduction, elasticity
GND-Keyword:Plattentheorie; Elastische Platte; Elastizität; Dünne Schicht; Konvergenz; Dimensionsreduktion
Page Number:106
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Nichtlineare Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht