• Treffer 10 von 13
Zurück zur Trefferliste

SON function performance prediction in a cognitive SON management system

  • As a reply to the increasing demand for fast mobile network connections the concept of Self-Organising Networks (SONs) has been developed, reducing the need for humans to execute Operation, Administration and Maintenance (OAM) tasks for mobile networks. However, a SON contains functions which are provided by different vendors as black boxes, making it hard to predict the performance of the network, especially under untested configurations. Since Mobile Network Operators (MNOs) have to fulfil rising mobile network performance demands while reducing costs at the same time, it is crucial to gain a better understanding of the network behaviour to allow a costneutral performance improvement while simultaneously reducing the risk of network misconfiguration and service disturbance. In this paper an approach is introduced to enhance SON Management models with cognitive Machine Learning (ML) methods. Therefore, the simulated behaviour of three different SON Functions is analysed andAs a reply to the increasing demand for fast mobile network connections the concept of Self-Organising Networks (SONs) has been developed, reducing the need for humans to execute Operation, Administration and Maintenance (OAM) tasks for mobile networks. However, a SON contains functions which are provided by different vendors as black boxes, making it hard to predict the performance of the network, especially under untested configurations. Since Mobile Network Operators (MNOs) have to fulfil rising mobile network performance demands while reducing costs at the same time, it is crucial to gain a better understanding of the network behaviour to allow a costneutral performance improvement while simultaneously reducing the risk of network misconfiguration and service disturbance. In this paper an approach is introduced to enhance SON Management models with cognitive Machine Learning (ML) methods. Therefore, the simulated behaviour of three different SON Functions is analysed and described by a Linear Regression (LR) Model. In a second step, performance data of network cells are analysed for similarities using k-Means Clustering. The findings of these two steps are then combined by fitting the models onto smaller clusters of cells. Finally, the utility of these models for predicting the performance of the network is evaluated and the different stages of refinement are compared with each other.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • 71811.pdfeng
    (1046KB)

    Postprint. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Simon LohmüllerGND, Fabian RabeGND, Andrea FendtGND, Bernhard BauerORCiDGND, Lars Christoph Schmelz
URN:urn:nbn:de:bvb:384-opus4-718111
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/71811
ISBN:9781538611548OPAC
Titel des übergeordneten Werkes (Englisch):2018 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 15-18 April 2018, Barcelona, Spain
Verlag:IEEE
Verlagsort:Piscataway, NJ
Herausgeber*in:Jordi Pérez-Romero, Stephan F. Pfletschinger
Typ:Teil eines Buches (Kapitel)
Sprache:Englisch
Jahr der Erstveröffentlichung:2018
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:04.03.2020
Erste Seite:13
Letzte Seite:18
DOI:https://doi.org/10.1109/wcncw.2018.8368999
Einrichtungen der Universität:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Software & Systems Engineering
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Softwaretechnik / Professur Softwaremethodik für verteilte Systeme
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):License LogoDeutsches Urheberrecht