• search hit 1 of 34
Back to Result List

Global spatio-temporal ERA5 precipitation downscaling to km and sub-hourly scale using generative AI

  • The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5The spatial and temporal distribution of precipitation significantly impacts human lives. While reanalysis datasets provide consistent long-term global precipitation information that allows investigations of rainfall-driven hazards like larger-scale flooding, they lack the resolution to capture the high spatio-temporal variability of precipitation and miss intense local rainfall events. Here, we introduce spateGAN-ERA5, the first deep learning-based spatio-temporal downscaling of precipitation data on a global scale. SpateGAN-ERA5 enhances ERA5 precipitation data from 24 km and 1 h to 2 km and 10 min, delivering high-resolution rainfall fields with realistic spatio-temporal patterns and accurate rain rate distribution, including extremes. Its computational efficiency enables the generation of a large ensemble of solutions, addressing uncertainties inherent to downscaling challenges and supports practical applicability for generating high-resolution precipitation data for arbitrary ERA5 time periods and regions on demand. Trained solely on data from Germany and validated in the US and Australia, considering diverse climates, including tropical rainfall regimes, spateGAN-ERA5 demonstrates strong generalization, indicating robust global applicability. It fulfills critical needs for high-resolution precipitation data in hydrological and meteorological research.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Luca Glawion, Julius Polz, Harald KunstmannORCiDGND, Benjamin Fersch, Christian ChwalaORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1232083
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123208
ISSN:2397-3722OPAC
Parent Title (English):npj Climate and Atmospheric Science
Publisher:Springer Science and Business Media LLC
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/07/03
Volume:8
Issue:1
First Page:219
DOI:https://doi.org/10.1038/s41612-025-01103-y
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Regionales Klima und Hydrologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)