A comparative analysis of federated and centralized learning for SpO2 prediction in five critical care databases
- This study explores the potential of federated learning (FL) to develop a predictive model of hypoxemia in intensive care unit (ICU) patients. Centralized learning (CL) and local learning (LL) approaches have been limited by the localized nature of data, which restricts CL approaches to the available data due to data privacy regulations. A CL approach that combines data from different institutions, could offer superior performance compared to a single-institution approach. However, the use of this method raises ethical and regulatory concerns. In this context, FL presents a promising middle ground, enabling collaborative model training on geographically dispersed ICU data without compromising patient confidentiality. This study is the first to use all five public ICU databases combined. The findings demonstrate that FL achieved comparable or even slightly improved performance compared to local or centralized learning approaches.
Author: | Johanna SchwinnORCiD, Seyedmostafa SheikhalishahiORCiD, Matthaeus MorhartORCiD, Mathias KasparORCiDGND, Ludwig Christian HinskeORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1203693 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/120369 |
ISBN: | 9781643685335OPAC |
ISSN: | 0926-9630OPAC |
ISSN: | 1879-8365OPAC |
Parent Title (English): | Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024 |
Publisher: | IOS Press |
Place of publication: | Amsterdam |
Editor: | John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou |
Type: | Conference Proceeding |
Language: | English |
Year of first Publication: | 2024 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/03/18 |
First Page: | 786 |
Last Page: | 790 |
Series: | Studies in Health Technology and Informatics ; 316 |
DOI: | https://doi.org/10.3233/shti240529 |
Institutes: | Medizinische Fakultät |
Medizinische Fakultät / Universitätsklinikum | |
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support | |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
Licence (German): | ![]() |