The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 11292
Back to Result List

A comparative analysis of federated and centralized learning for SpO2 prediction in five critical care databases

  • This study explores the potential of federated learning (FL) to develop a predictive model of hypoxemia in intensive care unit (ICU) patients. Centralized learning (CL) and local learning (LL) approaches have been limited by the localized nature of data, which restricts CL approaches to the available data due to data privacy regulations. A CL approach that combines data from different institutions, could offer superior performance compared to a single-institution approach. However, the use of this method raises ethical and regulatory concerns. In this context, FL presents a promising middle ground, enabling collaborative model training on geographically dispersed ICU data without compromising patient confidentiality. This study is the first to use all five public ICU databases combined. The findings demonstrate that FL achieved comparable or even slightly improved performance compared to local or centralized learning approaches.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johanna SchwinnORCiD, Seyedmostafa SheikhalishahiORCiD, Matthaeus MorhartORCiD, Mathias KasparORCiDGND, Ludwig Christian HinskeORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1203693
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120369
ISBN:9781643685335OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024
Publisher:IOS Press
Place of publication:Amsterdam
Editor:John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/03/18
First Page:786
Last Page:790
Series:Studies in Health Technology and Informatics ; 316
DOI:https://doi.org/10.3233/shti240529
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)