• search hit 6 of 97
Back to Result List

A federated learning model for the prediction of blood transfusion in intensive care units

  • Accurate prediction of blood transfusion requirements is crucial for patient outcomes and resource management in clinical settings. We developed a machine learning model using XGBoost to predict the need for a blood transfusion 2 hours in advance based on up to 7 hours of prior data from two large databases, MIMIC-IV and eICU-CRD. Our federated model showed promising results, with F1 scores of 0.72 and 0.66, respectively.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Johanna SchwinnORCiD, Seyedmostafa SheikhalishahiORCiD, Matthaeus MorhartORCiD, Mathias KasparORCiD, Ludwig Christian HinskeORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1223926
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/122392
ISBN:9781643685960OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott
Type:Conference Proceeding
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/05/30
First Page:227
Last Page:228
Series:Studies in Health Technology and Informatics ; 327
DOI:https://doi.org/10.3233/shti250311
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)