A federated learning model for the prediction of blood transfusion in intensive care units
- Accurate prediction of blood transfusion requirements is crucial for patient outcomes and resource management in clinical settings. We developed a machine learning model using XGBoost to predict the need for a blood transfusion 2 hours in advance based on up to 7 hours of prior data from two large databases, MIMIC-IV and eICU-CRD. Our federated model showed promising results, with F1 scores of 0.72 and 0.66, respectively.
Author: | Johanna SchwinnORCiD, Seyedmostafa SheikhalishahiORCiD, Matthaeus MorhartORCiD, Mathias KasparORCiD, Ludwig Christian HinskeORCiDGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1223926 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/122392 |
ISBN: | 9781643685960OPAC |
ISSN: | 0926-9630OPAC |
ISSN: | 1879-8365OPAC |
Parent Title (English): | Intelligent health systems – from technology to data and knowledge: proceedings of MIE 2025 |
Publisher: | IOS Press |
Place of publication: | Amsterdam |
Editor: | Elisavet Andrikopoulou, Parisis Gallos, Theodoros N. Arvanitis, Rosalynn Austin, Arriel Benis, Ronald Cornet, Panagiotis Chatzistergos, Alexander Dejaco, Linda Dusseljee-Peute, Alaa Mohasseb, Pantelis Natsiavas, Haythem Nakkas, Philip Scott |
Type: | Conference Proceeding |
Language: | English |
Year of first Publication: | 2025 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2025/05/30 |
First Page: | 227 |
Last Page: | 228 |
Series: | Studies in Health Technology and Informatics ; 327 |
DOI: | https://doi.org/10.3233/shti250311 |
Institutes: | Medizinische Fakultät |
Medizinische Fakultät / Universitätsklinikum | |
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support | |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit |
Licence (German): | ![]() |