The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 7 of 38
Back to Result List

Asymptotic properties of resampling‐based processes for the average treatment effect in observational studies with competing risks

  • Abstract In observational studies with time‐to‐event outcomes, the g‐formula can be used to estimate a treatment effect in the presence of confounding factors. However, the asymptotic distribution of the corresponding stochastic process is complicated and thus not suitable for deriving confidence intervals or time‐simultaneous confidence bands for the average treatment effect. A common remedy are resampling‐based approximations, with Efron's nonparametric bootstrap being the standard tool in practice. We investigate the large sample properties of three different resampling approaches and prove their asymptotic validity in a setting with time‐to‐event data subject to competing risks. The usage of these approaches is demonstrated by an analysis of the effect of physical activity on the risk of knee replacement among patients with advanced knee osteoarthritis.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jasmin RühlORCiDGND, Sarah FriedrichORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1180839
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118083
ISSN:0303-6898OPAC
ISSN:1467-9469OPAC
Parent Title (English):Scandinavian Journal of Statistics
Publisher:Wiley
Place of publication:Weinheim
Type:Article
Language:English
Date of first Publication:2024/11/05
Publishing Institution:Universität Augsburg
Release Date:2025/01/19
Tag:average treatment effect; g‐formula; resampling; time‐to‐event data
Volume:51
Issue:4
First Page:1506
Last Page:1532
DOI:https://doi.org/10.1111/sjos.12714
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Mathematical Statistics and Artificial Intelligence in Medicine
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)