• Treffer 20 von 27
Zurück zur Trefferliste

What if social robots look for productive engagement? Automated assessment of goal-centric engagement in learning applications

  • In educational HRI, it is generally believed that a robots behavior has a direct effect on the engagement of a user with the robot, the task at hand and also their partner in case of a collaborative activity. Increasing this engagement is then held responsible for increased learning and productivity. The state of the art usually investigates the relationship between the behaviors of the robot and the engagement state of the user while assuming a linear relationship between engagement and the end goal: learning. However, is it correct to assume that to maximise learning, one needs to maximise engagement? Furthermore, conventional supervised models of engagement require human annotators to get labels. This is not only laborious but also introduces further subjectivity in an already subjective construct of engagement. Can we have machine-learning models for engagement detection where annotations do not rely on human annotators? Looking deeper at the behavioral patterns and the learningIn educational HRI, it is generally believed that a robots behavior has a direct effect on the engagement of a user with the robot, the task at hand and also their partner in case of a collaborative activity. Increasing this engagement is then held responsible for increased learning and productivity. The state of the art usually investigates the relationship between the behaviors of the robot and the engagement state of the user while assuming a linear relationship between engagement and the end goal: learning. However, is it correct to assume that to maximise learning, one needs to maximise engagement? Furthermore, conventional supervised models of engagement require human annotators to get labels. This is not only laborious but also introduces further subjectivity in an already subjective construct of engagement. Can we have machine-learning models for engagement detection where annotations do not rely on human annotators? Looking deeper at the behavioral patterns and the learning outcomes and a performance metric in a multi-modal data set collected in an educational human–human–robot setup with 68 students, we observe a hidden link that we term as Productive Engagement. We theorize a robot incorporating this knowledge will (1) distinguish teams based on engagement that is conducive of learning; and (2) adopt behaviors that eventually lead the users to increased learning by means of being productively engaged. Furthermore, this seminal link paves way for machine-learning models in educational HRI with automatic labelling based on the data.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jauwairia NasirGND, Barbara Bruno, Mohamed Chetouani, Pierre Dillenbourg
URN:urn:nbn:de:bvb:384-opus4-1075812
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/107581
ISSN:1875-4791OPAC
ISSN:1875-4805OPAC
Titel des übergeordneten Werkes (Englisch):International Journal of Social Robotics
Verlag:Springer
Verlagsort:Berlin
Typ:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2022
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:20.09.2023
Freies Schlagwort / Tag:Control and Systems Engineering; Electrical and Electronic Engineering; General Computer Science; Human-Computer Interaction
Jahrgang:14
Ausgabe / Heft:1
Erste Seite:55
Letzte Seite:71
DOI:https://doi.org/10.1007/s12369-021-00766-w
Einrichtungen der Universität:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Menschzentrierte Künstliche Intelligenz
DDC-Klassifikation:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Lizenz (Deutsch):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)