• search hit 1 of 2508
Back to Result List

A spectral relevance analysis approach to pattern recognition of financial time series

  • Understanding patterns in financial time series is crucial for improving prediction accuracy in algorithmic trading and risk management. This paper presents a novel AI-based computer vision approach for classifying financial time series. Historical price sequences are transformed into Gramian Angular Difference Field (GADF) images and fed into a convolutional neural network (CNN) for pattern recognition. To interpret the CNN’s decision-making process, we apply Spectral Relevance Analysis (SpRAy), enabling the identification of distinct clusters based on relevance maps. Clustering the images according to their relevance profiles reveals groups with significantly higher predictive performance compared to the full dataset. The corresponding relevance patterns highlight favorable price movement structures and are identified via the associated clusters.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christine Distler, Yarema OkhrinORCiDGND, Jonathan PfahlerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1253113
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125311
ISSN:0957-4174OPAC
Parent Title (English):Expert Systems with Applications
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2026
Publishing Institution:Universität Augsburg
Release Date:2025/09/20
Volume:298
Issue:part A
First Page:129555
DOI:https://doi.org/10.1016/j.eswa.2025.129555
Institutes:Wirtschaftswissenschaftliche Fakultät
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie
Wirtschaftswissenschaftliche Fakultät / Institut für Statistik und mathematische Wirtschaftstheorie / Lehrstuhl für Statistik
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)