• search hit 40 of 2128
Back to Result List

Biased random walk on dynamical percolation

  • We study biased random walks on dynamical percolation on Zd. We establish a law of large numbers and an invariance principle for the random walk using regeneration times. Moreover, we verify that the Einstein relation holds, and we investigate the speed of the walk as a function of the bias. While for d=1 the speed is increasing, we show that, in general, this fails in dimension d≥2. As our main result, we establish two regimes of parameters, separated by an explicit critical curve such that the speed is either eventually strictly increasing or eventually strictly decreasing. This is in sharp contrast to the biased random walk on a static supercritical percolation cluster where the speed is known to be eventually zero.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sebastian Andres, Nina Gantert, Dominik SchmidGND, Perla Sousi
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123083
ISSN:0091-1798OPAC
Parent Title (English):The Annals of Probability
Publisher:Institute of Mathematical Statistics
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/06/26
Volume:52
Issue:6
First Page:2051
Last Page:2078
DOI:https://doi.org/10.1214/23-aop1679
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik