The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 7550
Back to Result List

HIBRID: histology-based risk-stratification with deep learning and ctDNA in colorectal cancer

  • Although surgical resection is the standard therapy for stage II/III colorectal cancer, recurrence rates exceed 30%. Circulating tumor DNA (ctNDA) detects molecular residual disease (MRD), but lacks spatial and tumor microenvironment information. Here, we develop a deep learning (DL) model to predict disease-free survival from hematoxylin & eosin stained whole slide images in stage II-IV colorectal cancer. The model is trained on the DACHS cohort (n = 1766) and validated on the GALAXY cohort (n = 1404). In GALAXY, the DL model categorizes 304 patients as DL high-risk and 1100 as low-risk (HR 2.31; p < 0.005). Combining DL scores with MRD status improves prognostic stratification in both MRD-positive (HR 1.58; p < 0.005) and MRD-negative groups (HR 2.1; p < 0.005). Notably, MRD-negative patients predicted as DL high-risk benefit from adjuvant chemotherapy (HR 0.49; p = 0.01) vs. DL low-risk (HR = 0.92; p = 0.64). Combining ctDNA with DL-based histology analysis significantly improvesAlthough surgical resection is the standard therapy for stage II/III colorectal cancer, recurrence rates exceed 30%. Circulating tumor DNA (ctNDA) detects molecular residual disease (MRD), but lacks spatial and tumor microenvironment information. Here, we develop a deep learning (DL) model to predict disease-free survival from hematoxylin & eosin stained whole slide images in stage II-IV colorectal cancer. The model is trained on the DACHS cohort (n = 1766) and validated on the GALAXY cohort (n = 1404). In GALAXY, the DL model categorizes 304 patients as DL high-risk and 1100 as low-risk (HR 2.31; p < 0.005). Combining DL scores with MRD status improves prognostic stratification in both MRD-positive (HR 1.58; p < 0.005) and MRD-negative groups (HR 2.1; p < 0.005). Notably, MRD-negative patients predicted as DL high-risk benefit from adjuvant chemotherapy (HR 0.49; p = 0.01) vs. DL low-risk (HR = 0.92; p = 0.64). Combining ctDNA with DL-based histology analysis significantly improves risk stratification, with the potential to improve follow-up and personalized adjuvant therapy decisions.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Chiara M. L. Loeffler, Hideaki Bando, Srividhya Sainath, Hannah Sophie Muti, Xiaofeng Jiang, Marko van Treeck, Nic Gabriel ReitsamORCiDGND, Zunamys I. Carrero, Asier Rabasco Meneghetti, Tomomi Nishikawa, Toshihiro Misumi, Saori Mishima, Daisuke Kotani, Hiroya Taniguchi, Ichiro Takemasa, Takeshi Kato, Eiji Oki, Yuan Tanwei, Wankhede Durgesh, Sebastian Foersch, Hermann Brenner, Michael Hoffmeister, Yoshiaki Nakamura, Takayuki Yoshino, Jakob Nikolas Kather
URN:urn:nbn:de:bvb:384-opus4-1248484
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/124848
ISSN:2041-1723OPAC
Parent Title (English):Nature Communications
Publisher:Springer Nature
Type:Article
Language:English
Date of Publication (online):2025/08/27
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/04
Volume:16
First Page:7561
DOI:https://doi.org/10.1038/s41467-025-62910-8
Institutes:Medizinische Fakultät
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Allgemeine und Spezielle Pathologie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoCC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)