• search hit 9 of 7604
Back to Result List

Classifying the AMi-Br mitotic figure dataset with AUCMEDI

  • Mitotic figure (MF) density has been established as a key biomarker for certain tumors. Recently, the differentiation between atypical MFs (AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs density could be an independent biomarker. This results in the challenge of finding an automated, deterministic way to differentiate between AMFs In this study, the AUCMEDI deep learning framework is applied to the recently published AMi-Br dataset to get a first bearing on the complexity of the task at hand. The dataset includes eight mitotic subclasses derived from breast cancer samples, four for NMFs and four for AMF. Using a patient-level cross- validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an eight-class subtype classification model. Our results show high specificity across all classes (≥ 90%), but sensitivity varies significantly between mitotic subclasses (0–82%), reflecting the dataset’s inherent challenges. The mean AUC of 85.90%Mitotic figure (MF) density has been established as a key biomarker for certain tumors. Recently, the differentiation between atypical MFs (AMF) and normal MFs (NMFs) has gained increased interest in research, as AMFs density could be an independent biomarker. This results in the challenge of finding an automated, deterministic way to differentiate between AMFs In this study, the AUCMEDI deep learning framework is applied to the recently published AMi-Br dataset to get a first bearing on the complexity of the task at hand. The dataset includes eight mitotic subclasses derived from breast cancer samples, four for NMFs and four for AMF. Using a patient-level cross- validation strategy and a ConvNeXt-based ensemble, we trained and evaluated an eight-class subtype classification model. Our results show high specificity across all classes (≥ 90%), but sensitivity varies significantly between mitotic subclasses (0–82%), reflecting the dataset’s inherent challenges. The mean AUC of 85.90% outperforms the binary classification baseline (69.8%) The results highlight the promise of progress in subclass-level mitotic analysis while pointing to areas for further model refinement.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daniel HieberGND, Friederike Lische-StarneckerGND, Johannes Schobel, Rüdiger Pryss, Frank KramerORCiDGND, Dominik MüllerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1250213
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/125021
ISBN:9781643686158OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):German Medical Data Sciences 2025: GMDS Illuminates Health: proceedings of the 70th Annual Meeting of the German Association of Medical Informatics, Biometry, and Epidemiology e.V. (gmds), Jena, Germany, 7-11 September 2025
Publisher:IOS Press
Place of publication:Amsterdam
Editor:Rainer Röhrig, Thomas Ganslandt, Klaus Jung, Ann-Kristin Kock-Schoppenhauer, Jochem König, Ulrich Sax, Martin Sedlmayr, Cord Spreckelsen, Antonia Zapf
Type:Conference Proceeding
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/09/12
First Page:339
Last Page:345
Series:Studies in Health Technology and Informatics ; 331
DOI:https://doi.org/10.3233/shti251413
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Allgemeine und Spezielle Pathologie
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)