Inductive item tree analysis: Corrections, improvements, and comparisons
- There are various methods in knowledge space theory for building knowledge structures or surmise relations from data. Few of them have been thoroughly analyzed, making difficult to decide which of these methods provide good results and when to apply each of the methods. In this paper, we investigate the method inductive item tree analysis and discuss the advantages and disadvantages of this algorithm. In particular, we introduce some corrections and improvements to it, resulting in two newly proposed algorithms. These algorithms and the original inductive item tree analysis procedure are compared in a simulation study and with empirical data.
Author: | Anatol SarginGND, Ali ÜnlüGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-5869 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/730 |
Series (Serial Number): | Preprints des Instituts für Mathematik der Universität Augsburg (2008-24) |
Publisher: | Institut für Mathematik, Universität Augsburg |
Place of publication: | Augsburg |
Type: | Preprint |
Language: | English |
Date of Publication (online): | 2009/11/01 |
Year of first Publication: | 2008 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2008/06/09 |
Tag: | Inductive Item Tree Analysis; Knowledge Space Theory |
GND-Keyword: | Psychometrie; Wissensrepräsentation; Datenanalyse; Itemanalyse; Diskrete Struktur |
Page Number: | 22 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | ![]() |