Large fluctuations of the first detected quantum return time

  • How long does it take a quantum particle to return to its origin? As shown previously under repeated projective measurements aimed to detect the return, the closed cycle yields a geometrical phase which shows that the average first detected return time is quantized. For critical sampling times or when parameters of the Hamiltonian are tuned this winding number is modified. These discontinuous transitions exhibit gigantic fluctuations of the return time. While the general formalism of this problem was studied at length, the magnitude of the fluctuations, which is quantitatively essential, remains poorly characterized. Here, we derive explicit expressions for the variance of the return time, for quantum walks in finite Hilbert space. A classification scheme of the diverging variance is presented, for four different physical effects: the Zeno regime, when the overlap of an energy eigenstate and the detected state is small, and when two or three phases of the problem merge. These scenariosHow long does it take a quantum particle to return to its origin? As shown previously under repeated projective measurements aimed to detect the return, the closed cycle yields a geometrical phase which shows that the average first detected return time is quantized. For critical sampling times or when parameters of the Hamiltonian are tuned this winding number is modified. These discontinuous transitions exhibit gigantic fluctuations of the return time. While the general formalism of this problem was studied at length, the magnitude of the fluctuations, which is quantitatively essential, remains poorly characterized. Here, we derive explicit expressions for the variance of the return time, for quantum walks in finite Hilbert space. A classification scheme of the diverging variance is presented, for four different physical effects: the Zeno regime, when the overlap of an energy eigenstate and the detected state is small, and when two or three phases of the problem merge. These scenarios present distinct physical effects which can be analyzed with the fluctuations of return times investigated here, leading to a topology-dependent time-energy uncertainty principle.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ruoyu Yin, Klaus G. ZieglerORCiDGND, Felix Thiel, Eli Barkai
URN:urn:nbn:de:bvb:384-opus4-516524
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/51652
Parent Title (English):Physical Review Research
Publisher:American Physical Society
Type:Article
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Release Date:2019/04/09
Volume:1
Issue:3
First Page:033086
DOI:https://doi.org/10.1103/PhysRevResearch.1.033086
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik II
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)