Transitive separation logic
- Separation logic (SL) is an extension of Hoare logic by operations and formulas that not only talk about program variables, but also about heap portions. Its general purpose is to enable more exible reasoning about linked object/record structures. In the present paper we give an algebraic extension of SL at the data structure level. We define operations that additionally to heap separation make assumptions about the linking structure. Phenomena to be treated comprise reachability analysis, (absence of) sharing, cycle detection, preservation of substructures under destructive assignments. We demonstrate the practicality of this approach with the examples of in-place list-reversal and tree rotation.
Author: | Han-Hing Dang, Bernhard MöllerGND |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-587577 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/58757 |
ISBN: | 9783642333132OPAC |
ISBN: | 9783642333149OPAC |
ISSN: | 0302-9743OPAC |
ISSN: | 1611-3349OPAC |
Parent Title (English): | Lecture Notes in Computer Science |
Publisher: | Springer |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2012 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2019/07/23 |
Volume: | 7560 |
First Page: | 1 |
Last Page: | 16 |
DOI: | https://doi.org/10.1007/978-3-642-33314-9_1 |
Institutes: | Fakultät für Angewandte Informatik |
Fakultät für Angewandte Informatik / Institut für Informatik | |
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme | |
Dewey Decimal Classification: | 0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik |
Licence (German): | Deutsches Urheberrecht |