Transitive separation logic

  • Separation logic (SL) is an extension of Hoare logic by operations and formulas that not only talk about program variables, but also about heap portions. Its general purpose is to enable more exible reasoning about linked object/record structures. In the present paper we give an algebraic extension of SL at the data structure level. We define operations that additionally to heap separation make assumptions about the linking structure. Phenomena to be treated comprise reachability analysis, (absence of) sharing, cycle detection, preservation of substructures under destructive assignments. We demonstrate the practicality of this approach with the examples of in-place list-reversal and tree rotation.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Han-Hing Dang, Bernhard MöllerGND
URN:urn:nbn:de:bvb:384-opus4-587577
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/58757
ISBN:9783642333132OPAC
ISBN:9783642333149OPAC
ISSN:0302-9743OPAC
ISSN:1611-3349OPAC
Parent Title (English):Lecture Notes in Computer Science
Publisher:Springer
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2012
Publishing Institution:Universität Augsburg
Release Date:2019/07/23
Volume:7560
First Page:1
Last Page:16
DOI:https://doi.org/10.1007/978-3-642-33314-9_1
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Programmiermethodik und Multimediale Informationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht