A deep adaptation network for speech enhancement: combining a relativistic discriminator with multi-kernel maximum mean discrepancy

Download full text files

  • 83220.pdfeng
    (33243KB)

    Postprint. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jiaming Cheng, Ruiyu Liang, Zhenlin Liang, Li Zhao, Chengwei Huang, Björn SchullerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-832201
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/83220
ISSN:2329-9290OPAC
ISSN:2329-9304OPAC
Parent Title (English):IEEE/ACM Transactions on Audio, Speech, and Language Processing
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Type:Article
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2021/02/08
Tag:Speech and Hearing; Media Technology; Linguistics and Language; Signal Processing; Acoustics and Ultrasonics; Instrumentation; Electrical and Electronic Engineering
Volume:29
First Page:41
Last Page:53
DOI:https://doi.org/10.1109/taslp.2020.3036611
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):Deutsches Urheberrecht