- The brief history of relaxation in continuum mechanics ranges from early application of non-convex plasticity and phase transition formulations to small and large strain continuum damage mechanics. However, relaxed continuum damage mechanics formulations are still limited in the following sense that their material response lack to model strain softening and the convexification of the non-convex incremental stress potential is computationally costly. This paper presents a reduced model for relaxed continuum damage mechanics at finite strains which includes strain softening by a fiber-specific damage in the microsphere approach. Computational efficiency is achieved by novel adaptive algorithms for the fast convexification of the one-dimensional fiber material model. The algorithms are benchmarked against state-of-the-art methods, and the choice of quadrature schemes for the microsphere approach is discussed. This contribution is finalized by a mesh independence test.