Existence results for double phase problems depending on Robin and Steklov eigenvalues for the p-Laplacian
- In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at infinity. Our proofs make use of variational tools, truncation techniques and comparison methods. The obtained solutions depend on the first eigenvalues of the Robin and Steklov eigenvalue problems for the p-Laplacian.
Author: | Said El Manouni, Greta MarinoGND, Patrick Winkert |
---|---|
URN: | urn:nbn:de:bvb:384-opus4-1021630 |
Frontdoor URL | https://opus.bibliothek.uni-augsburg.de/opus4/102163 |
ISSN: | 2191-950XOPAC |
ISSN: | 2191-9496OPAC |
Parent Title (English): | Advances in Nonlinear Analysis |
Publisher: | Walter de Gruyter |
Place of publication: | Berlin |
Type: | Article |
Language: | English |
Year of first Publication: | 2022 |
Publishing Institution: | Universität Augsburg |
Release Date: | 2023/02/20 |
Tag: | Analysis |
Volume: | 11 |
Issue: | 1 |
First Page: | 304 |
Last Page: | 320 |
DOI: | https://doi.org/10.1515/anona-2020-0193 |
Institutes: | Mathematisch-Naturwissenschaftlich-Technische Fakultät |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik | |
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Inverse Probleme | |
Dewey Decimal Classification: | 5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik |
Licence (German): | CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand) |