Advanced 1,2,3-triazolate-based coordination compounds: from carbonic anhydrase mimics, molecular building blocks, and catalyst supports to electrically conducting spin-crossover MOFs

  • Kuratowski complexes and related metal-organic frameworks (MOF), especially of the MFU-4-type, built from 1,2,3-triazolate-based ligands gained increasing interest in the last years due to their variable side ligands and metal sites. Such materials and their post-synthetic modifications have shown an outstanding potential for applications such as adsorption, capture, separation and kinetic trapping of gases, drug delivery, atmospheric water harvesting, sensing, H2/D2 quantum sieving, investigation of fundamental magnetic phenomena, and in particular catalysis. In this respect, MFU-4-type MOF catalysts were shown to outperform other heterogeneous catalysts for the dimerization and polymerization of olefins with some applications already advancing toward commercial applicability. This thesis mainly aims to extend the functionality of 1,2,3-triazolate-based coordination materials via advanced linker designs, novel framework assembly strategies, and post-synthetic modifications, as wellKuratowski complexes and related metal-organic frameworks (MOF), especially of the MFU-4-type, built from 1,2,3-triazolate-based ligands gained increasing interest in the last years due to their variable side ligands and metal sites. Such materials and their post-synthetic modifications have shown an outstanding potential for applications such as adsorption, capture, separation and kinetic trapping of gases, drug delivery, atmospheric water harvesting, sensing, H2/D2 quantum sieving, investigation of fundamental magnetic phenomena, and in particular catalysis. In this respect, MFU-4-type MOF catalysts were shown to outperform other heterogeneous catalysts for the dimerization and polymerization of olefins with some applications already advancing toward commercial applicability. This thesis mainly aims to extend the functionality of 1,2,3-triazolate-based coordination materials via advanced linker designs, novel framework assembly strategies, and post-synthetic modifications, as well as through a better understanding of the underlying material properties. During this project, several new organic and complex building blocks, as well as advanced framework structures were prepared and characterized. Furthermore, additional emphasis was directed to the investigation and interpretation of resulting physical phenomena like phase transitions, magnetism, and electrical conductivity. The Zn-MFU-4l ([Zn5IICl4(BTDD)3]; H2-BTDD = bis(1H-1,2,3-triazolo[4,5-b][4′,5′-i])dibenzo[1,4]dioxin) and Co-MFU-4l ([Zn1.3IICo3.7IICl4(BTDD)3]) metal-organic frameworks were prepared according to the literature procedures and modified by a post-synthetic side ligand exchange of the chloride anions, which led to MFU-4-type structures featuring organometallic metal-carbon bonds. Overall, five new Zn-MFU-4l structures of the general formula [Zn5IILxCl4–x(BTDD)3] (4 ≥ x > 3; L = methanido, ethanido, n-butanido, tert-butanido, 3,3-dimethyl-1-butyn-1-ido; Zn-MFU-4l-Me, -Et, -n-Bu, -t-Bu, -Butyne) and two new Co-MFU-4l structures, Co-MFU-4l-Me ([Zn1.5IICo3.5IIMe3.1Cl0.9(BTDD)3]) and Co-MFU-4l-OH ([Zn1.4IICo3.6II (OH)3.1Cl0.9(BTDD)3]), were obtained. Such side ligands were not characterized for MFU-4-type MOFs before, although they are presumed responsible for the metal site activation during olefin catalysis reactions, which require organometallic co-catalysts. For this purpose, a combination of simulated and measured IR spectra was developed as well-suited characterization technique for such insoluble materials, which preclude analytical methods like liquid state NMR and mass spectroscopy. A high stability of the organometallic Zn-MFU-4l derivatives was observed, whereas the Co-MFU-4l-Me was of a pyrophoric nature and reacted upon water contact to Co-MFU-4l-OH, which exhibited a CO2 binding mechanism comparable to that of carbonic anhydrase. Synthesis of Kuratowski complexes built from 1H-benzotriazole-5,6-diamine (H-btda) ligands and post-synthetic exchange of the chloride side ligands with Tp/Tp* (Tp= hydrotris(pyrazolyl)borate; Tp* = hydrotris(3,5-dimethyl-1-pyrazolyl)borate) provided us with a variety of six-fold diamine-functionalized molecular building blocks intended for the development of novel MOF construction pathways. Crystallization of those compounds have already led to the assembly of porous metal hydrogen-bonded frameworks (M-HOF), some of which have even exhibited permanent porosity. This is a rare property of this material class, which is still in its infancy with only a few structures reported so far. Overall, five new metal hydrogen-bonded framework assemblies (CFA-20-X ((2,6-lutidinium)+[Zn5X4(btda)6X]−· n(DMF); X= Cl−, Br−), CFA-20-Tp, CFA-20-Tp*, CFA-20-Tp*-DMSO ([Zn5Y4(btda)6]; Y = Tp, Tp*) could be characterized, thus representing a significant contribution to this field of study. Although no MOFs could be crystallized from reactions of these complexes with metal salts, preliminary results have shown that direct incorporation of metal sites is a suitable pathway to convert M-HOFs into more stable MOFs. Taking the functionality of MFU-4-type frameworks to the next level, the novel 1,1',5,5'-tetrahydro-6,6'-biimidazo[4,5-f]benzotriazole (H4-bibt) ligand was developed to potentiate the post-synthetic modification possibilities compared to other MFU-4-type frameworks via introduction of additional and easily accessible biimidazole coordination sites at the linker backbone. This gave rise to the five most sophisticated MFU-4-type structures prepared so far. Post-synthetic Tp ligand exchange in the resulting MFU-4-type CFA-19 ([Co5IICl4(H2-bibt)3]) provided the stable CFA-19-Tp ([Co5IICl0.4Tp3.6(H2-bibt)3]) framework, in which the additional coordination sites were saturated in a third modification step with MIBr(CO)3 (M= Re, Mn) moieties or deprotonated via introduction of ZnEt moieties. The resulting materials exhibit high metal site density single-crystal X-ray structures with over 1700 atoms per unit cell for the ReBr(CO)3@CFA-19-Tp ([Co5IICl0.4Tp3.6(H2-bibt)3·(ReIBr(CO)3)2.8]) and a thermally induced release of all CO ligands for the MnBr(CO)3@CFA-19-Tp ([Co5IICl0.4Tp3.6(H2-bibt)3(MnIBr(CO)3)3]·3.1(MnIBr(CO)X)). Preliminary results also indicate a facile incorporation of other coordination moieties such as MIICl2 (M= PdII, PtII). These proof-of-principle incorporations of coordination moieties and open metal sites render such CFA-19-type scaffolds promising supports for an even larger variety of active species intended for the binding and activation of small molecules in future investigations. Coincidental synthesis of the novel CFA-23 ((((propan-2-yl)oxidanium)+[Mn6IICl5(ta)8]−; H-ta= 1H-1,2,3-triazole) coordination framework provided the opportunity to investigate changes of the resulting magnetic properties in comparison to a similar structure built from 1H-1,2,3-benzotriazole, as well as the ultra-narrow character of the pore channels in CFA-23. High purity samples of the literature-known Fe(ta)2 (H-ta= 1H-1,2,3-triazole) framework were prepared and investigated in detail to unveil its record hysteresis spin-crossover phase transition. Aiming at the use of Fe(ta)2 in surface acoustic wave-based sensor applications, experimental and theoretical insights into the material’s electrical conductivity changes upon adsorption of inert gases were assisted with the measurement of adsorption isotherms and the determination of the resulting isosteric enthalpies of adsorption.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Richard Röß-OhlenrothORCiD
URN:urn:nbn:de:bvb:384-opus4-1033100
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/103310
Advisor:Dirk Volkmer
Type:Doctoral Thesis
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Granting Institution:Universität Augsburg, Mathematisch-Naturwissenschaftlich-Technische Fakultät
Date of final exam:2023/03/15
Release Date:2023/05/08
Tag:metal-organic framework; complex; carbonic anhydrase; spin-crossover; triazolates
GND-Keyword:Metallorganisches Netzwerk; Chemische Synthese; Triazole; Spin Crossover; Carboanhydrase
Pagenumber:VI, 321
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Festkörperchemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht