Improving the transfer of machine learning-based video QoE estimation across diverse networks

  • With video streaming traffic generally being encrypted end-to-end, there is a lot of interest from network operators to find novel ways to evaluate streaming performance at the application layer. Machine learning (ML) has been extensively used to develop solutions that infer application-level Key Performance Indicators (KPI) and/or Quality of Experience (QoE) from the patterns in encrypted traffic. Having such insights provides the means for more user-centric traffic management and enables the mitigation of QoE degradations, thus potentially preventing customer churn. The ML–based QoE/KPI estimation solutions proposed in literature are typically trained on a limited set of network scenarios and it is often unclear how the obtained models perform if applied in a previously unseen setting (e.g., if the model is applied at the premises of a different network operator). In this paper, we address this gap by cross-evaluating the performance of QoE/KPI estimation models trained on 4 separateWith video streaming traffic generally being encrypted end-to-end, there is a lot of interest from network operators to find novel ways to evaluate streaming performance at the application layer. Machine learning (ML) has been extensively used to develop solutions that infer application-level Key Performance Indicators (KPI) and/or Quality of Experience (QoE) from the patterns in encrypted traffic. Having such insights provides the means for more user-centric traffic management and enables the mitigation of QoE degradations, thus potentially preventing customer churn. The ML–based QoE/KPI estimation solutions proposed in literature are typically trained on a limited set of network scenarios and it is often unclear how the obtained models perform if applied in a previously unseen setting (e.g., if the model is applied at the premises of a different network operator). In this paper, we address this gap by cross-evaluating the performance of QoE/KPI estimation models trained on 4 separate datasets generated from streaming 48000 video streaming sessions. The paper evaluates a set of methods for improving the performance of models when applied in a different network. Analyzed methods require no or considerably less application-level ground-truth data collected in the new setting, thus significantly reducing the extensiveness of required data collection.show moreshow less

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael SeufertORCiDGND, Irena Orsolic
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109792
ISSN:1932-4537OPAC
ISSN:2373-7379OPAC
Parent Title (English):IEEE Transactions on Network and Service Management
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Place of publication:Piscataway, NJ
Type:Article
Language:English
Year of first Publication:2023
Publishing Institution:Universität Augsburg
Release Date:2023/12/06
Tag:Electrical and Electronic Engineering; Computer Networks and Communications
DOI:https://doi.org/10.1109/tnsm.2023.3326664
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für vernetzte eingebettete Systeme und Kommunikationssysteme
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Latest Publications (not yet published in print):Aktuelle Publikationen (noch nicht gedruckt erschienen)
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)