Unstabilized hybrid high-order method for a class of degenerate convex minimization problems

  • The relaxation procedure in the calculus of variations leads to minimization problems with a quasi-convex energy density. In some problems of nonlinear elasticity, topology optimization, and multiphase models, the energy density is convex with some convexity control plus two-sided $p$-growth. The minimizers may be non-unique in the primal variable, but define a unique stress variable $\sigma$. The approximation by hybrid high-order (HHO) methods utilizes a reconstruction of the gradients in the space of piecewise Raviart-Thomas finite element functions without stabilization on a regular triangulation into simplices. The application of the HHO methodology to this class of degenerate convex minimization problems allows for a unique $H(\div)$ conform stress approximation $\sigma_h$. The a priori estimates for the stress error $\sigma - \sigma_h$ in the Lebesgue norm are established for mixed boundary conditions without additional assumptions on the primal variable and lead to convergenceThe relaxation procedure in the calculus of variations leads to minimization problems with a quasi-convex energy density. In some problems of nonlinear elasticity, topology optimization, and multiphase models, the energy density is convex with some convexity control plus two-sided $p$-growth. The minimizers may be non-unique in the primal variable, but define a unique stress variable $\sigma$. The approximation by hybrid high-order (HHO) methods utilizes a reconstruction of the gradients in the space of piecewise Raviart-Thomas finite element functions without stabilization on a regular triangulation into simplices. The application of the HHO methodology to this class of degenerate convex minimization problems allows for a unique $H(\div)$ conform stress approximation $\sigma_h$. The a priori estimates for the stress error $\sigma - \sigma_h$ in the Lebesgue norm are established for mixed boundary conditions without additional assumptions on the primal variable and lead to convergence rates for smooth solutions. The a posteriori analysis provides guaranteed error control, including a computable lower energy bound, and a convergent adaptive scheme. Numerical benchmarks display higher convergence rates for higher polynomial degrees and provide empirical evidence for the superlinear convergence of the lower energy bound. Although the focus is on the unstabilized HHO method, a detailed error analysis is provided for the stabilized version with a gradient reconstruction in the space of piecewise polynomials.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ngoc Tien TranGND
URN:urn:nbn:de:bvb:384-opus4-1098718
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/109871
Publisher:Humboldt-Universität zu Berlin
Place of publication:Berlin
Type:Book
Language:English
Year of first Publication:2021
Publishing Institution:Universität Augsburg
Release Date:2023/12/07
Pagenumber:92
Note:
Dissertation, Berlin, Humboldt-Universität zu Berlin, 2021
DOI:https://doi.org/10.18452/23322
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Numerische Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)