Dysfunction of attention switching networks in amyotrophic lateral sclerosis

  • Objective To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms. Rationale The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigated as a quantitative biomarker of impairment in ALS or its sub-phenotypes. Methods MMN responses from 128-channel electroencephalography (EEG) recordings in 58 ALS patients and 39 healthy controls were localised to source by three separate localisation methods, including beamforming, dipoleObjective To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms. Rationale The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigated as a quantitative biomarker of impairment in ALS or its sub-phenotypes. Methods MMN responses from 128-channel electroencephalography (EEG) recordings in 58 ALS patients and 39 healthy controls were localised to source by three separate localisation methods, including beamforming, dipole fitting and exact low resolution brain electromagnetic tomography. Results Compared with controls, ALS patients showed significant increase in power of the left posterior parietal, central and dorsolateral prefrontal cortices (false discovery rate = 0.1). This change correlated with impaired cognitive flexibility (rho = 0.45, 0.45, 0.47, p = .042, .055, .031 respectively). ALS patients also exhibited a decrease in the power of dipoles representing activity in the inferior frontal (left: p = 5.16 × 10−6, right: p = 1.07 × 10−5) and left superior temporal gyri (p = 9.30 × 10−6). These patterns were detected across three source localisation methods. Decrease in right inferior frontal gyrus activity was a good discriminator of ALS patients from controls (AUROC = 0.77) and an excellent discriminator of C9ORF72 expansion-positive patients from controls (AUROC = 0.95). Interpretation Source localization of evoked potentials can reliably discriminate patterns of functional network impairment in ALS and ALS subgroups during involuntary attention switching. The discriminative ability of the detected cognitive changes in specific brain regions are comparable to those of functional magnetic resonance imaging (fMRI). Source analysis of high-density EEG patterns has excellent potential to provide non-invasive, data-driven quantitative biomarkers of network disruption that could be harnessed as novel neurophysiology-based outcome measures in clinical trials.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Roisin McMackin, Stefan Dukic, Michael Broderick, Parameswaran M. Iyer, Marta Pinto-Grau, Kieran Mohr, Rangariroyashe Chipika, Amina Coffey, Teresa Buxo, Christina Schuster, Brighid Gavin, Mark Heverin, Peter Bede, Niall Pender, Edmund C. Lalor, Muthuraman MuthuramanORCiDGND, Orla Hardiman, Bahman Nasseroleslami
URN:urn:nbn:de:bvb:384-opus4-1101847
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/110184
ISSN:2213-1582OPAC
Parent Title (English):NeuroImage: Clinical
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2019
Publishing Institution:Universität Augsburg
Release Date:2023/12/13
Tag:Cognitive Neuroscience; Neurology (clinical); Neurology; Radiology, Nuclear Medicine and imaging
Volume:22
First Page:101707
DOI:https://doi.org/10.1016/j.nicl.2019.101707
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Professur für Informatik in der Medizintechnik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)