Model calibration and uncertainty analysis in signaling networks

  • For a long time the biggest challenges in modeling cellular signal transduction networks has been the inference of crucial pathway components and the qualitative description of their interactions. As a result of the emergence of powerful high-throughput experiments, it is now possible to measure data of high temporal and spatial resolution and to analyze signaling dynamics quantitatively. In addition, this increase of high-quality data is the basis for a better understanding of model limitations and their influence on the predictive power of models. We review established approaches in signal transduction network modeling with a focus on ordinary differential equation models as well as related developments in model calibration. As central aspects of the calibration process we discuss possibilities of model adaptation based on data-driven parameter optimization and the concomitant objective of reducing model uncertainties.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tim Heinemann, Andreas RaueORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1132030
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113203
ISSN:0958-1669OPAC
Parent Title (English):Current Opinion in Biotechnology
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2016
Publishing Institution:Universität Augsburg
Release Date:2024/06/03
Volume:39
First Page:143
Last Page:149
DOI:https://doi.org/10.1016/j.copbio.2016.04.004
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für Modellierung und Simulation biologischer Prozesse
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)