A spectral ansatz for the long-time homogenization of the wave equation

  • Consider the wave equation with heterogeneous coefficients in the homogenization regime. At large times, the wave interacts in a nontrivial way with the heterogeneities, giving rise to effective dispersive effects. The main achievement of the present work is a new ansatz for the long-time two-scale expansion inspired by spectral analysis. Based on this spectral ansatz, we extend and refine all previous results in the field, proving homogenization up to optimal timescales with optimal error estimates, and covering all the standard assumptions on heterogeneities (both periodic and stationary random settings).

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mitia Duerinckx, Antoine Gloria, Matthias RufGND
URN:urn:nbn:de:bvb:384-opus4-1137324
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/113732
ISSN:2270-518XOPAC
Parent Title (French):Journal de l'École polytechnique — Mathématiques
Publisher:Cellule MathDoc/Centre Mersenne
Place of publication:Paris
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2024/07/01
Volume:11
First Page:523
Last Page:587
DOI:https://doi.org/10.5802/jep.259
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Nichtlineare Analysis
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)