Quantifying the tangling of trajectories using the topological entropy

  • We present a simple method to efficiently compute a lower limit of the topological entropy and its spatial distribution for two-dimensional mappings. These mappings could represent either two-dimensional time-periodic fluid flows or three-dimensional magnetic fields, which are periodic in one direction. This method is based on measuring the length of a material line in the flow. Depending on the nature of the flow, the fluid can be mixed very efficiently which causes the line to stretch. Here, we study a method that adaptively increases the resolution at locations along the line where folds lead to a high curvature. This reduces the computational cost greatly which allows us to study unprecedented parameter regimes. We demonstrate how this efficient implementation allows the computation of the variation of the finite-time topological entropy in the mapping. This measure quantifies spatial variations of the braiding efficiency, important in many practical applications.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Simon CandelaresiORCiDGND, D. I. Pontin, G. Hornig
URN:urn:nbn:de:bvb:384-opus4-1149314
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/114931
ISSN:1054-1500OPAC
ISSN:1089-7682OPAC
Parent Title (English):Chaos: An Interdisciplinary Journal of Nonlinear Science
Publisher:AIP Publishing
Place of publication:Woodbury, NY
Type:Article
Language:English
Year of first Publication:2017
Publishing Institution:Universität Augsburg
Release Date:2024/08/26
Volume:27
Issue:9
First Page:093102
DOI:https://doi.org/10.1063/1.5000812
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für High-Performance Scientific Computing
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)