Assembly of tight junction belts by ZO1 surface condensation and local actin polymerization

  • Tight junctions play an essential role in sealing tissues, by forming belts of adhesion strands around cellular perimeters. Recent work has shown that the condensation of ZO1 scaffold proteins is required for tight junction assembly. However, the mechanisms by which junctional condensates initiate at cell-cell contacts and elongate around cell perimeters remain unknown. Combining biochemical reconstitutions and live-cell imaging of MDCKII tissue, we found that tight junction belt formation is driven by adhesion receptor-mediated ZO1 surface condensation coupled to local actin polymerization. Adhesion receptor oligomerization provides the signal for surface binding and local condensation of ZO1 at the cell membrane. Condensation produces a molecular scaffold that selectively enriches junctional proteins. Finally, ZO1 condensates directly facilitate local actin polymerization and filament bundling, driving the elongation into a continuous tight junction belt. More broadly, our workTight junctions play an essential role in sealing tissues, by forming belts of adhesion strands around cellular perimeters. Recent work has shown that the condensation of ZO1 scaffold proteins is required for tight junction assembly. However, the mechanisms by which junctional condensates initiate at cell-cell contacts and elongate around cell perimeters remain unknown. Combining biochemical reconstitutions and live-cell imaging of MDCKII tissue, we found that tight junction belt formation is driven by adhesion receptor-mediated ZO1 surface condensation coupled to local actin polymerization. Adhesion receptor oligomerization provides the signal for surface binding and local condensation of ZO1 at the cell membrane. Condensation produces a molecular scaffold that selectively enriches junctional proteins. Finally, ZO1 condensates directly facilitate local actin polymerization and filament bundling, driving the elongation into a continuous tight junction belt. More broadly, our work identifies how cells couple surface condensation with cytoskeleton organization to assemble and structure adhesion complexes.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daxiao Sun, Xueping Zhao, Tina Wiegand, Cecilie Martin-Lemaitre, Tom Borianne, Lennart Kleinschmidt, Stephan W. Grill, Anthony A. Hyman, Christoph A. WeberORCiDGND, Alf Honigmann
URN:urn:nbn:de:bvb:384-opus4-1180545
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118054
ISSN:1534-5807OPAC
Parent Title (English):Developmental Cell
Publisher:Elsevier BV
Place of publication:Amsterdam
Type:Article
Language:English
Year of first Publication:2025
Publishing Institution:Universität Augsburg
Release Date:2025/01/16
Volume:60
Issue:8
First Page:1234
Last Page:1250.e6
DOI:https://doi.org/10.1016/j.devcel.2024.12.012
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik II
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):CC-BY-NC-ND 4.0: Creative Commons: Namensnennung - Nicht kommerziell - Keine Bearbeitung (mit Print on Demand)