Deep learning based automatic fibroglandular tissue segmentation in breast magnetic resonance imaging screening

  • In light of the global increase in breast cancer cases and the crucial importance of the density of fibroglandular tissue (FGT) in assessing risk and predicting the course of the disease, the accurate measurement of FGT emerges as a significant challenge in diagnostic imaging. The current study focuses on the automatic segmentation of breast glandular tissue in MRI scans using a deep learning model. The aim is to establish a solid foundation for the development of methods for the precise quantification of fibroglandular tissue. For this purpose, the publicly available ‘Duke Breast Cancer MRI’ dataset was systematically processed to train a deep neural network model utilizing the nnU-Net (‘no-new-Net’) framework, which was then subjected to a quantitative evaluation. The results show the following macro-averaged metrics with standard deviation: Dice Similarity Coefficient 0.827 ± 0.152, accuracy 0.997 ± 0.003, sensitivity 0.825 ± 0.158, and specificity 0.999 ± 0.001. The effectivenessIn light of the global increase in breast cancer cases and the crucial importance of the density of fibroglandular tissue (FGT) in assessing risk and predicting the course of the disease, the accurate measurement of FGT emerges as a significant challenge in diagnostic imaging. The current study focuses on the automatic segmentation of breast glandular tissue in MRI scans using a deep learning model. The aim is to establish a solid foundation for the development of methods for the precise quantification of fibroglandular tissue. For this purpose, the publicly available ‘Duke Breast Cancer MRI’ dataset was systematically processed to train a deep neural network model utilizing the nnU-Net (‘no-new-Net’) framework, which was then subjected to a quantitative evaluation. The results show the following macro-averaged metrics with standard deviation: Dice Similarity Coefficient 0.827 ± 0.152, accuracy 0.997 ± 0.003, sensitivity 0.825 ± 0.158, and specificity 0.999 ± 0.001. The effectiveness of our model in segmenting FGT is underscored by the high values of the Dice coefficient, Accuracy, Sensitivity, and Specificity, which reflect the precision and reliability of our results. The findings of this study lay a solid foundation for developing automated methods to quantify FGT. Our research efforts, especially driven by clinical studies at the University Hospital Augsburg, are focused on further exploring and validating these potentials.show moreshow less

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Guelsuem Pehlivan, Carl Mathis WildORCiD, Julia Baumgartl, Dennis HartmannORCiD, Nina DitschORCiDGND, Frank KramerORCiDGND, Dominik MuellerORCiDGND
URN:urn:nbn:de:bvb:384-opus4-1189269
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/118926
ISBN:9781643685335OPAC
ISSN:0926-9630OPAC
ISSN:1879-8365OPAC
Parent Title (English):Digital health and informatics innovations for sustainable health care systems: proceedings of MIE 2024
Publisher:IOS Press
Place of publication:Amsterdam
Editor:John Mantas, Arie Hasman, George Demiris, Kaija Saranto, Michael Marschollek, Theodoros N. Arvanitis, Ivana Ognjanović, Arriel Benis, Parisis Gallos, Emmanouil Zoulias, Elisavet Andrikopoulou
Type:Conference Proceeding
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/02/10
First Page:1115
Last Page:1119
Series:Studies in Health Technology and Informatics ; 316
DOI:https://doi.org/10.3233/shti240606
Institutes:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Informatik
Medizinische Fakultät
Fakultät für Angewandte Informatik / Institut für Informatik / Lehrstuhl für IT-Infrastrukturen für die Translationale Medizinische Forschung
Medizinische Fakultät / Universitätsklinikum
Medizinische Fakultät / Lehrstuhl für Diagnostische und Interventionelle Radiologie
Medizinische Fakultät / Lehrstuhl für Frauenheilkunde
Medizinische Fakultät / Professur für Operative und Konservative Senologie
Medizinische Fakultät / Lehrstuhl für Datenmanagement und Clinical Decision Support
Nachhaltigkeitsziele
Nachhaltigkeitsziele / Ziel 3 - Gesundheit und Wohlergehen
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):CC-BY-NC 4.0: Creative Commons: Namensnennung - Nicht kommerziell (mit Print on Demand)