Cutoff on trees is rare

  • We study the simple random walk on trees and give estimates on the mixing and relaxation times. Relying on a seminal result by Basu, Hermon and Peres characterizing cutoff on trees, we give geometric criteria that are easy to verify and allow to determine whether the cutoff phenomenon occurs. We provide a general characterization of families of trees with cutoff, and show how our criteria can be used to prove the absence of cutoff for several classes of trees, including spherically symmetric trees, Galton–Watson trees of a fixed height, and sequences of random trees converging to the Brownian continuum random tree.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nina Gantert, Evita Nestoridi, Dominik SchmidGND
URN:urn:nbn:de:bvb:384-opus4-1231356
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/123135
ISSN:0894-9840OPAC
ISSN:1572-9230OPAC
Parent Title (English):Journal of Theoretical Probability
Publisher:Springer Science and Business Media LLC
Place of publication:Berlin
Type:Article
Language:English
Year of first Publication:2024
Publishing Institution:Universität Augsburg
Release Date:2025/06/27
Volume:37
Issue:2
First Page:1417
Last Page:1444
DOI:https://doi.org/10.1007/s10959-023-01274-5
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik / Lehrstuhl für Stochastik und ihre Anwendungen
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):CC-BY 4.0: Creative Commons: Namensnennung (mit Print on Demand)