Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 225 von 104042
Zurück zur Trefferliste

Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales

  • This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TCCON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7  ppm compared to the free run (1.1 and 1.4  ppm, respectively) and an improved estimated precision of 1  ppm compared to the GOSAT BESD data (3.3  ppm). We also show that the analysis hasThis study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TCCON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7  ppm compared to the free run (1.1 and 1.4  ppm, respectively) and an improved estimated precision of 1  ppm compared to the GOSAT BESD data (3.3  ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00:00  UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000  km) even up to day 5 compared to its own analysis.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Statistik

Anzahl der Zugriffe auf dieses Dokument

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf SussmannORCiDGND, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, Voltaire A. Velazco
URN:urn:nbn:de:bvb:384-opus4-1206983
Frontdoor-URLhttps://opus.bibliothek.uni-augsburg.de/opus4/120698
ISSN:1680-7324OPAC
Titel des übergeordneten Werkes (Englisch):Atmospheric Chemistry and Physics
Verlag:Copernicus
Verlagsort:Göttingen
Typ:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Erstveröffentlichung:2016
Veröffentlichende Institution:Universität Augsburg
Datum der Freischaltung in OPUS:28.03.2025
Jahrgang:16
Ausgabe / Heft:3
Erste Seite:1653
Letzte Seite:1671
DOI:https://doi.org/10.5194/acp-16-1653-2016
Einrichtungen der Universität:Fakultät für Angewandte Informatik
Fakultät für Angewandte Informatik / Institut für Geographie
Fakultät für Angewandte Informatik / Institut für Geographie / Lehrstuhl für Physische Geographie mit Schwerpunkt Klimaforschung
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Lizenz (Deutsch):License LogoCC-BY 3.0: Creative Commons - Namensnennung (mit Print on Demand)