Refine
Document Type
- Article (8)
Language
- English (8)
Keywords
- General Medicine (8) (remove)
Institute
- Lehrstuhl für Diagnostische und Interventionelle Neuroradiologie (8)
- Medizinische Fakultät (8)
- Universitätsklinikum (8)
- Lehrstuhl für Kinder- und Jugendmedizin (3)
- Lehrstuhl für Diagnostische und Interventionelle Radiologie (1)
- Lehrstuhl für Nuklearmedizin (1)
- Nachhaltigkeitsziele (1)
- Ziel 3 - Gesundheit und Wohlergehen (1)
Hypothalamic syndrome
(2022)
Purpose
Positron emission tomography (PET) with O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) is a well-established tool for non-invasive assessment of adult central nervous system (CNS) tumors. However, data on its diagnostic utility and impact on clinical management in children and adolescents are limited.
Methods
Twenty-one children and young adults (13 males; mean age, 8.6 ± 5.2 years; range, 1–19 at initial diagnosis) with either newly diagnosed (n = 5) or pretreated (n = 16) CNS tumors were retrospectively analyzed. All patients had previously undergone neuro-oncological work-up including cranial magnetic resonance imaging. In all cases, [18F]FET-PET was indicated in a multidisciplinary team conference. The impact of PET imaging on clinical decision-making was assessed. Histopathology (n = 12) and/or clinical and imaging follow-up (n = 9) served as the standard of reference.
Results
The addition of [18F]FET-PET to the available information had an impact on further patient management in 14 out of 21 subjects, with avoidance of invasive surgery or biopsy in four patients, biopsy guidance in four patients, change of further treatment in another five patients, and confirmation of diagnosis in one patient.
Conclusion
[18F]FET-PET may provide important additional information for treatment guidance in pediatric and adolescent patients with CNS tumors.
Outcome after pediatric craniopharyngioma: the role of age at diagnosis and hypothalamic damage
(2023)
Neurofibromatosis type 1 (NF1) is a phenotypically heterogenous multisystem cancer predisposition syndrome manifesting in childhood and adolescents. Central nervous system (CNS) manifestations include structural, neurodevelopmental, and neoplastic disease. We aimed to (1) characterize the spectrum of CNS manifestations of NF1 in a paediatric population, (2) explore radiological features in the CNS by image analyses, and (3) correlate genotype with phenotypic expression for those with a genetic diagnosis. We performed a database search in the hospital information system covering the period between January 2017 and December 2020. We evaluated the phenotype by retrospective chart review and imaging analysis. 59 patients were diagnosed with NF1 [median age 10.6 years (range, 1.1–22.6); 31 female] at last follow-up, pathogenic NF1 variants were identified in 26/29. 49/59 patients presented with neurological manifestations including 28 with structural and neurodevelopmental findings, 16 with neurodevelopmental, and 5 with structural findings only. Focal areas of signal intensity (FASI) were identified in 29/39, cerebrovascular anomalies in 4/39. Neurodevelopmental delay was reported in 27/59 patients, learning difficulties in 19/59. Optic pathway gliomas (OPG) were diagnosed in 18/59 patients, 13/59 had low-grade gliomas outside the visual pathways. 12 patients received chemotherapy. Beside the established NF1 microdeletion, neither genotype nor FASI were associated with the neurological phenotype. NF1 was associated with a spectrum of CNS manifestations in at least 83.0% of patients. Regular neuropsychological assessment complementing frequent clinical and ophthalmologic testing for OPG is necessary in the care of each child with NF1.
Brain stem tumors in children less than 3 months: clinical and radiologic findings of a rare disease
(2024)
Purpose
Brain stem tumors in children < 3 months at diagnosis are extremely rare. Our aim is to study a retrospective cohort to improve the understanding of the disease course and guide patient management.
Methods
This is a multicenter retrospective analysis across the European Society for Pediatric Oncology SIOP-E HGG/DIPG Working Group linked centers, including patients with a brainstem tumor diagnosed between 2009 and 2020 and aged < 3 months at diagnosis. Clinical data were collected, and imaging characteristics were analyzed blindly and independently by two neuroradiologists.
Results
Five cases were identified. No patient received any therapy. The epicenter of two tumors was in the medulla oblongata alone and in the medulla oblongata and the pons in three. For patients with tumor in equal parts in the medulla oblongata and the pons (n = 3), the extension at diagnosis involved the spinal cord; for the two patients with the tumor epicenter in the medulla oblongata alone (n = 2), the extension at diagnosis included the pons (n = 2) and the spinal cord (n = 1). Biopsy was performed in one patient identifying a pilocytic astrocytoma. Two patients died. In one patient, autopsy revealed a high-grade glioma (case 3). Three survivors showed either spontaneous tumor regression (n = 2) or stable disease (n = 1). Survivors were followed up for 10, 7, and 0.6 years, respectively. One case had the typical imaging characteristics of a dorsal exophytic low-grade glioma.
Conclusions
No patient fulfilled the radiologic criteria defining a high-grade glioma. Central neuroradiological review and biopsy may provide useful information regarding the patient management.