• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish/report a document
  • Help

Refine

Has Fulltext

  • yes (4)
  • no (2)

Author

  • Gugatschka, Markus (6) (remove)

Year of publication

  • 2023 (1)
  • 2018 (3)
  • 2017 (1)
  • 2012 (1)

Document Type

  • Article (6)

Language

  • English (6)

Keywords

  • Biomedical Engineering (1)
  • Health Informatics (1)
  • Signal Processing (1)

Institute

  • Fakultät für Angewandte Informatik (6)
  • Institut für Informatik (6)
  • Lehrstuhl für Embedded Intelligence for Health Care and Wellbeing (6)
  • Fakultätsübergreifende Institute und Einrichtungen (1)
  • Zentrum für Interdisziplinäre Gesundheitsforschung (ZIG) (1)

6 search hits

  • 1 to 6
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Early vocal development in autism spectrum disorder, Rett Syndrome, and Fragile X Syndrome: insights from studies using retrospective video analysis (2018)
Roche, Laura ; Zhang, Dajie ; Bartl-Pokorny, Katrin D. ; Pokorny, Florian B. ; Schuller, Björn ; Esposito, Gianluca ; Bölte, Sven ; Roeyers, Herbert ; Poustka, Luise ; Gugatschka, Markus ; Waddington, Hannah ; Vollmann, Ralf ; Einspieler, Christa ; Marschik, Peter B.
Typical vs. atypical: combining auditory Gestalt perception and acoustic analysis of early vocalisations in Rett syndrome (2018)
Pokorny, Florian B. ; Bartl-Pokorny, Katrin D. ; Einspieler, Christa ; Zhang, Dajie ; Vollmann, Ralf ; Bölte, Sven ; Gugatschka, Markus ; Schuller, Björn ; Marschik, Peter B.
A novel way to measure and predict development: a heuristic approach to facilitate the early detection of neurodevelopmental disorders (2017)
Marschik, Peter B. ; Pokorny, Florian B. ; Peharz, Robert ; Zhang, Dajie ; O’Muircheartaigh, Jonathan ; Roeyers, Herbert ; Bölte, Sven ; Spittle, Alicia J. ; Urlesberger, Berndt ; Schuller, Björn ; Poustka, Luise ; Ozonoff, Sally ; Pernkopf, Franz ; Pock, Thomas ; Tammimies, Kristiina ; Enzinger, Christian ; Krieber, Magdalena ; Tomantschger, Iris ; Bartl-Pokorny, Katrin D. ; Sigafoos, Jeff ; Roche, Laura ; Esposito, Gianluca ; Gugatschka, Markus ; Nielsen-Saines, Karin ; Einspieler, Christa ; Kaufmann, Walter E.
Response to name and its value for the early detection of developmental disorders: insights from autism spectrum disorder, Rett syndrome, and fragile X syndrome - a perspectives paper (2018)
Zhang, Dajie ; Roche, Laura ; Bartl-Pokorny, Katrin D. ; Krieber, Magdalena ; McLay, Laurie ; Bölte, Sven ; Poustka, Luise ; Sigafoos, Jeff ; Gugatschka, Markus ; Einspieler, Christa ; Marschik, Peter B.
Early speech-language development in females with Rett syndrome: focusing on the preserved speech variant (2012)
Marschik, Peter B. ; Pini, Giorgio ; Bartl-Pokorny, Katrin D. ; Duckworth, Martin ; Gugatschka, Markus ; Vollmann, Ralf ; Zappella, Michele ; Einspieler, Christa
VocDoc, what happened to my voice? Towards automatically capturing vocal fatigue in the wild (2023)
Pokorny, Florian B. ; Linke, Julian ; Seddiki, Nico ; Lohrmann, Simon ; Gerstenberger, Claus ; Haspl, Katja ; Feiner, Marlies ; Eyben, Florian ; Hagmüller, Martin ; Schuppler, Barbara ; Kubin, Gernot ; Gugatschka, Markus
Objective: Voice problems that arise during everyday vocal use can hardly be captured by standard outpatient voice assessments. In preparation for a digital health application to automatically assess longitudinal voice data ‘in the wild’ – the VocDoc, the aim of this paper was to study vocal fatigue from the speaker’s perspective, the healthcare professional’s perspective, and the ‘machine’s’ perspective. Methods: We collected data of four voice healthy speakers completing a 90-min reading task. Every 10 min the speakers were asked about subjective voice characteristics. Then, we elaborated on the task of elapsed speaking time recognition: We carried out listening experiments with speech and language therapists and employed random forests on the basis of extracted acoustic features. We validated our models speaker-dependently and speaker-independently and analysed underlying feature importances. For an additional, clinical application-oriented scenario, we extended our dataset for lecture recordings of another two speakers. Results: Self- and expert-assessments were not consistent. With mean F1 scores up to 0.78, automatic elapsed speaking time recognition worked reliably in the speaker-dependent scenario only. A small set of acoustic features – other than features previously reported to reflect vocal fatigue – was found to universally describe long-term variations of the voice. Conclusion: Vocal fatigue seems to have individual effects across different speakers. Machine learning has the potential to automatically detect and characterise vocal changes over time. Significance: Our study provides technical underpinnings for a future mobile solution to objectively capture pathological long-term voice variations in everyday life settings and make them clinically accessible.
  • 1 to 6

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks