Refine
Document Type
- Article (4)
- Doctoral Thesis (1)
Keywords
- Immunology and Allergy (2)
- Immunology (1)
Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population
(2020)
Purpose: To decipher the transcriptional signature of macrophages of the human vitreous, also known as hyalocytes, and compare it to the profiles of other myeloid cell populations including human blood-derived monocytes, macrophages, and brain microglia.
Methods: This study involves a total of 13 patients of advanced age with disorders of the vitreoretinal interface undergoing vitrectomy at the University Eye Hospital Freiburg between 2018 and 2019. Vitreal hyalocytes were analyzed by fluorescence-activated cell sorting (FACS) and isolated as CD45+CD11b+CX3CR1+Mat-Mac+ cells using a FACS-based sorting protocol. RNA extraction, library preparation and RNA sequencing were performed and the sequencing data was analyzed using the Galaxy web platform. The transcriptome of human hyalocytes was compared to the transcriptional profile of human blood-derived monocytes, macrophages and brain microglia obtained from public databases. Protein validation for selected factors was performed by immunohistochemistry on paraffin sections from three human donor eyes.
Results: On average, 383 ± 233 hyalocytes were isolated per patient, resulting in 128 pg/μl ± 76 pg/μl total RNA per sample. RNA sequencing revealed that SPP1, FTL, CD74, and HLA-DRA are among the most abundantly expressed genes in hyalocytes, which was confirmed by immunofluorescence for CD74, FTL, and HLA-DRA. Gene ontology (GO) enrichment analysis showed that biological processes such as "humoral immune response," "leukocyte migration," and "antigen processing and presentation of peptide antigen" (adjusted p < 0.001) are dominating in vitreal hyalocytes. While the comparison of the gene expression profiles of hyalocytes and other myeloid cell populations showed an overall strong similarity (R2 > 0.637, p < 0.001), hyalocytes demonstrated significant differences with respect to common leukocyte-associated factors. In particular, transcripts involved in the immune privilege of the eye, such as POMC, CD46, and CD86, were significantly increased in hyalocytes compared to other myeloid cell subsets.
Conclusion: Human hyalocytes represent a unique and distinct innate immune cell population specialized and adapted for the tissue-specific needs in the human vitreous. Vitreal hyalocytes are characterized by a strong expression of genes related to antigen processing and presentation as well as immune modulation. Thus, hyalocytes may represent an underestimated mediator in vitreoretinal disease and for the immune privilege of the eye.
Purpose: The pattern of immune cells infiltrating the corneal stroma has been extensively studied in mice, but data on human tissue have been far less elaborate. To further characterize the number and differentiation state of resident immune cells in organ-cultured human corneal tissue, we employed a comprehensive bioinformatic deconvolution (xCell) of bulk RNA-sequencing (RNA-seq) data, immunohistochemistry (IHC), and flow cytometry (FC). Methods: A transcriptome-based analysis of immune cell types in human corneal samples was performed. The results were validated by IHC, focusing on the identification of pro-inflammatory (M1) and regulatory (M2) macrophages. A protocol was established to identify these 2 different macrophage populations in human corneal tissue by means of FC. Subsequently, corneal samples in organ culture were differentially stimulated by IL-10, IL-4 & IL-13, or LPS and macrophage populations were evaluated regarding their response to these stimuli. Furthermore, cell survival was analyzed in correlation with time in organ culture. Results: xCell-based mathematical deconvolution of bulk RNA-seq data revealed the presence of CD8 T cells, Th17 cells, dendritic cells, and macrophages as the predominant immune cell types in organ-cultured human corneal tissue. Furthermore, RNA-seq allowed the detection of different macrophage marker genes in corneal samples, including PTPRC (CD45), ITGAM (CD11b), CD14, and CD74. Our RNA-seq data showed no evidence of a relevant presence of monocytes in human corneal tissue. The presence of different macrophage subtypes was confirmed by IHC. The disintegration and subsequent FC analysis of human corneal samples showed the presence of both M1 (HLA-DR+, CD282+, CD86+, and CD284+) and M2 (CD163+ and CD206+) macrophage subtypes. Furthermore, we found that the total number of macrophages in corneal samples decreased more than the total cell count with increasing tissue culture time. Treatment with IL-10 led to higher total cell counts per cornea and to an increased expression of the M2 marker CD163 (p < 0.05) while expression levels of various M1 macrophage markers were not significantly reduced by interleukin treatment. Conclusions: Regarding different macrophage populations, untreated human corneas showed more M1 than M2 macrophages. With increasing organ culture time, these macrophages decreased. In terms of cell dynamics, adding interleukins to the organ culture medium influenced the phenotype of macrophages within the cornea as detected by FC. Modifying the immunomodulatory properties of human grafts appears a promising approach to further reduce the risk of graft rejection in patients. In this context, treatment with interleukins was more effective in upregulating M2 macrophages than in suppressing M1 macrophages in corneal tissue.
GCTs are developmental tumors and are likely to reflect ontogenetic and teratogenetic determinants. The objective of this study was to identify syndromes with or without congenital anomalies and non-syndromic defects as potential risk factors. Patients with extracranial GCTs (eGCTs) registered in MAKEI 96/MAHO 98 between 1996 and 2017 were included. According to Teilum’s holistic concept, malignant and benign teratomas were registered. We used a case–control study design with Orphanet as a reference group for syndromic defects and the Mainz birth registry (EUROCAT) for congenital anomalies at birth. Co-occurring genetic syndromes and/or congenital anomalies were assessed accordingly. Odds ratios and 95% confidence intervals were calculated and p-values for Fisher’s exact test with Bonferroni correction if needed. A strong association was confirmed for Swyer (OR 338.6, 95% CI 43.7–2623.6) and Currarino syndrome (OR 34.2, 95% CI 13.2–88.6). We additionally found 16 isolated cases of eGCT with a wide range of syndromes. However, these were not found to be significantly associated following Bonferroni correction. Most of these cases pertained to girls. Regarding non-syndromic defects, no association with eGCTs could be identified. In our study, we confirmed a strong association for Swyer and Currarino syndromes with additional congenital anomalies.
Dieses Positionspapier basiert auf der langjährigen klinischen Erfahrung und grundlagen-wissenschaftlichen Forschung der Autoren zur Diagnose und Behandlung von Kindern und Jugendlichen mit einem präsymptomatischen Frühstadium des Typ-1-Diabetes. Der Nutzen sowie potenzielle Nachteile der Früherkennung von Typ-1-Diabetes durch ein Inselautoantikörper-Screening werden kritisch diskutiert. Zudem werden die Perspektiven einer Verzögerung des Ausbruchs der klinischen Stoffwechselerkrankung durch eine Teplizumab-Behandlung adressiert. Wir sehen heute die Chance einer relevanten Verbesserung der therapeutischen Möglichkeiten und der Lebensperspektive betroffener Kinder und Jugendlicher. Wichtige nächste Schritte für die Implementierung eines Inselautoantikörper-Screenings in Deutschland sind die Fortbildung der Kinder- und Jugendärzte, die über das Screening aufklären sollen, die Etablierung von wenigen überregionalen Laboratorien, die die Testung durchführen, und die Ausweitung regionaler Kapazitäten für Schulung und Betreuung der Kinder mit einem Frühstadium des Typ-1-Diabetes.