Nasir, Jauwairia
Refine
Has Fulltext
- yes (3)
Document Type
- Article (2)
- Conference Proceeding (1)
Language
- English (3)
Keywords
Transactive discussion during collaborative learning is crucial for building on each other's reasoning and developing problem solving strategies. In a tabletop collaborative learning activity, student actions on the interface can drive their thinking and be used to ground discussions, thus affecting their problem-solving performance and learning. However, it is not clear how the interplay of actions and discussions, for instance, how students performing actions or pausing actions while discussing, is related to their learning. In this paper, we seek to understand how the transactivity of actions and discussions is associated with learning. Specifically, we ask what is the relationship between discussion and actions, and how it is different between those who learn (gainers) and those who do not (non-gainers). We present a combined differential sequence mining and content analysis approach to examine this relationship, which we applied on the data from 32 teams collaborating on a problem designed to help them learn concepts of minimum spanning trees. We found that discussion and action occur concurrently more frequently among gainers than non-gainers. Further we find that gainers tend to do more reflective actions along with discussion, such as looking at their previous solutions, than non-gainers. Finally, gainers discussion consists more of goal clarification, reflection on past solutions and agreement on future actions than non-gainers, who do not share their ideas and cannot agree on next steps. Thus this approach helps us identify how the interplay of actions and discussion could lead to learning, and the findings offer guidelines to teachers and instructional designers regarding indicators of productive collaborative learning, and when and how, they should intervene to improve learning. Concretely, the results suggest that teachers should support elaborative, reflective and planning discussions along with reflective actions.
The learning process depends on the nature of the learning environment, particularly in the case of open-ended learning environments, where the learning process is considered to be non-linear. In this paper, we report on the findings of employing a multimodal Hidden Markov Model (HMM) based methodology to investigate the temporal learning processes of two types of learners that have learning gains and a type that does not have learning gains in an open-ended collaborative learning activity. Considering log data, speech behavior, affective states and gaze patterns, we find that all learners start from a similar state of non-productivity, but once out of it they are unlikely to fall back into that state, especially in the case of the learners that have learning gains. Those who have learning gains shift between two problem solving strategies, each characterized by both exploratory and reflective actions, as well as demonstrate speech and gaze patterns associated with these strategies, that differ from those who don't have learning gains. Further, the teams that have learning gains also differ between themselves in the manner in which they employ the problem solving strategies over the interaction, as well as in the manner they express negative emotions while exhibiting a particular strategy. These outcomes contribute to understanding the multiple pathways of learning in an open-ended collaborative learning environment, and provide actionable insights for designing effective interventions.
Understanding the way learners engage with learning technologies, and its relation with their learning, is crucial for motivating design of effective learning interventions. Assessing the learners’ state of engagement, however, is non-trivial. Research suggests that performance is not always a good indicator of learning, especially with open-ended constructivist activities. In this paper, we describe a combined multi-modal learning analytics and interaction analysis method that uses video, audio and log data to identify multi-modal collaborative learning behavioral profiles of 32 dyads as they work on an open-ended task around interactive tabletops with a robot mediator. These profiles, which we name Expressive Explorers, Calm Tinkerers, and Silent Wanderers, confirm previous collaborative learning findings. In particular, the amount of speech interaction and the overlap of speech between a pair of learners are behavior patterns that strongly distinguish between learning and non-learning pairs. Delving deeper, findings suggest that overlapping speech between learners can indicate engagement that is conducive to learning. When we more broadly consider learner affect and actions during the task, we are better able to characterize the range of behavioral profiles exhibited among those who learn. Specifically, we discover two behavioral dimensions along which those who learn vary, namely, problem solving strategy (actions) and emotional expressivity (affect). This finding suggests a relation between problem solving strategy and emotional behavior; one strategy leads to more frustration compared to another. These findings have implications for the design of real-time learning interventions that support productive collaborative learning in open-ended tasks.