Petrov-Galerkin Method for Approximation of Solutions to Operator equations in Positive and Negative Banach Spaces

  • The Galerkin method, in particular, the Galerkin method with finite elements (called finite element method) are widely used in numerical solving of differential equations. The Galerkin method allows us to obtain approximations of weak solutions only. However, a rich variety of problems arise in applications, where approximations of smooth solutions and solutions in negative spaces have to be found. This paper is devoted to the employment of the Petrov-Galerkin method for solving such problems. General results on convergence of the Petrov-Galerkin approximations of solutions to operator equations are obtained. The problem on construction of the subspaces, which ensure the convergence of the approximations, is investigated. By way of example, we consider two--and--three-dimensional problems of the elasticity, a parabolic problem, and a nonlinear problem of the plasticity.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:William G. LitvinovGND
URN:urn:nbn:de:bvb:384-opus4-12294
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/1533
Series (Serial Number):Preprints des Instituts für Mathematik der Universität Augsburg (2011-08)
Type:Preprint
Language:English
Publishing Institution:Universität Augsburg
Release Date:2011/05/24
Tag:approximation; positive space; negative space; projection; convergence; kernel
GND-Keyword:Galerkin-Methode; Operatorgleichung; Approximation; Finite-Elemente-Methode; Konvergenz; Banach-Raum
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Licence (German):Deutsches Urheberrecht mit Print on Demand