Mean-field theory of inhomogeneous fluids

  • The Barker-Henderson perturbation theory is a bedrock of liquid-state physics, providing quantitative predictions for the bulk thermodynamic properties of realistic model systems. However, this successful method has not been exploited for the study of inhomogeneous systems. We develop and implement a first-principles “Barker-Henderson density functional,” thus providing a robust and quantitatively accurate theory for classical fluids in external fields. Numerical results are presented for the hard-core Yukawa model in three dimensions. Our predictions for the density around a fixed test particle and between planar walls are in very good agreement with simulation data. The density profiles for the free liquid vapor interface show the expected oscillatory decay into the bulk liquid as the temperature is reduced toward the triple point, but with an amplitude much smaller than that predicted by the standard mean-field density functional.

Download full text files

Export metadata

Statistics

Number of document requests

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:S. M. Tschopp, Hidde D. VuijkORCiDGND, Abhinav SharmaORCiDGND, J. M. Brader
URN:urn:nbn:de:bvb:384-opus4-1038819
Frontdoor URLhttps://opus.bibliothek.uni-augsburg.de/opus4/103881
ISSN:2470-0045OPAC
ISSN:2470-0053OPAC
Parent Title (English):Physical Review E
Publisher:American Physical Society (APS)
Type:Article
Language:English
Year of first Publication:2020
Publishing Institution:Universität Augsburg
Release Date:2023/05/02
Volume:102
Issue:4
First Page:042140
DOI:https://doi.org/10.1103/physreve.102.042140
Institutes:Mathematisch-Naturwissenschaftlich-Technische Fakultät
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik
Mathematisch-Naturwissenschaftlich-Technische Fakultät / Institut für Physik / Lehrstuhl für Theoretische Physik II
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):Deutsches Urheberrecht